Responsive image
博碩士論文 etd-0825109-094915 詳細資訊
Title page for etd-0825109-094915
論文名稱
Title
鋼鐵廠中無接觸式鋼板搬運系統之電機特性分析與整合性驅控架構建立
Modeling and Control of Non-contacting Steel Plate Conveyance System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-21
繳交日期
Date of Submission
2009-08-25
關鍵字
Keywords
無接觸式鋼板搬運系統、有限元素分析、座標轉換、模糊控制
fuzzy control, finite element analysis, stationary reference frame transformation, non-contacting steel plate conveyance system
統計
Statistics
本論文已被瀏覽 5685 次,被下載 2278
The thesis/dissertation has been browsed 5685 times, has been downloaded 2278 times.
中文摘要
針對鋼鐵廠中鋼板搬運設備未來發展之可能需求,本論文中提出一種以線性感應電動機為基礎之無接觸式鋼板搬運系統。此系統僅利用單一組定子激磁電源即可同時提供鋼板所需之懸浮力與推進力,因此不但能提供高功率密度、直接傳動與機械結構簡單之特性,更可大幅減少鋼板搬運過程所產生的噪音。本研究首先應用磁路與電磁理論配合三維有限元素法,進行機構尺寸與電氣規範之設計與驗證,同時模擬與評估系統之靜態與類動態運轉特性。接著運用旋轉座標軸轉換理論,成功\地推導出系統電壓與作用力方程式,以完整掌握電動機之動態特性。依動態特性之分析結果並考量實際運作之環境限制,本研究更規劃設計出一套以模糊理論為控制核心之整合式控制架構,並利用數位訊號處理器配合硬體週邊電路,準確量測電流與由光學影像處理技術所得之線上氣隙回授訊號,實現電動機閉迴路驅控的目標。經過系統化之分析流程與實際驅控的測試結果,不僅證實所提出之系統符合設計需求,更提供電動機設計、分析與驅動各方面通盤的資訊,可做為未來系統實際發展與應用上的重要參考。
Abstract
A non-contacting steel plate conveyance system based on the linear induction motor scheme, which can provide lift and propulsive forces simultaneously, is proposed. It has the features of high power density, direct drive, simple mechanical structure, and being able to reduce the operation noise. A magnetic equivalent circuit method and electromagnetic theory incorporating with 3-D finite element analysis are involved to investigate the static and quasi-dynamic properties and confirm the electrical and mechanical designs. To realize the dynamic behavior and develop the closed-loop control, a proper stationary reference frame transformation of the system voltage equations is also introduced. By considering the practical operational environment, a fuzzy-based control structure integrated with remote optical measurement system has been established and implemented by a DSP-based controller combined with required peripheral circuits. The experimental results show the applicability of such control strategies. With the systematic procedures for design, analysis, and control provided in this dissertation, implementation feasibility of the proposed system can be conveniently demonstrated.
目次 Table of Contents
中文摘要………………………………………………………………….. I
英文摘要………………………………………………………………….. II
目錄……………………………………………………………………….. III
圖目錄…………………………………………………………………….. V
表目錄…………………………………………………………………….. VII
名稱縮寫索引…………………………………………………………….. VIII

第一章 緒論…………………………………………………………….. 1
1-1 前言……………………………………………………… 1
1-2 鋼鐵廠內特殊電磁設備之簡介…….…………………… 3
1-3 研究背景與動機………………………………………… 6
1-4 研究目標與重點………………………………………… 8

第二章 整合光學量測技術之無接觸式鋼板搬運系統………………... 11
2-1 電動機之機械結構與電氣規格………………………… 11
2-2 氣隙量測技術評估與選擇……………………………… 14
2-3 整合式系統驅控架構之構想.…………………………… 18

第三章 電動機架構之靜態特性分析………….………………………... 21
3-1 適應型等效磁路法與系統之靜態特性估算…………… 21
3-2 應用三維有限元素法於AMEC法之驗證……………… 26
3-3 電動機之靜態特性分析與實際應用之可行性評估…… 30

第四章 電動機架構之電磁數學模型建立……………………………... 34
4-1 電磁數學模型之定義與假設…………………………… 34
4-2 電磁數學模型之推導…………………………………… 36
4-2-1 系統統御方程式…………………………………. 36
4-2-2 向量磁位之表達式………………………………. 38
4-2-3 以邊界條件求解…………………………………. 40
4-2-4 重要電磁特性之推導……………………………. 44
4-3 電磁數學模型之驗證與修正…………………………… 45

第五章 定子正交參考軸系統模型與分析……...………………………. 53
5-1 座標轉換理論與座標軸定義…………………………… 53
5-1-1 座標軸轉換理論…………………………………. 53
5-1-2 無接觸式鋼板搬運系統之d-q座標軸定義…..….. 56
5-1-3 定子側固定參考軸之應用………………………. 58
5-2 a-b-c軸電壓方程式與電感矩陣推導…………………... 60
5-2-1 a-b-c軸電壓方程式……………………………… 60
5-2-2 電感矩陣之近似方程式…………………………. 61
5-3 d-q-0軸電壓方程式推導….…………………………….. 68
5-4 d-q-0軸作用力方程式…………………………………... 70
5-5 無感測器之重要參數估測……………………………… 74
5-5-1 等效行進磁場之磁交鏈大小與位置估測………. 74
5-5-2 鋼板移動速度估測…………….…………………. 75

第六章 系統控制策略與整合式驅動架構之設計……………………... 77
6-1 控制策略之設計……………….………………………… 77
6-2 無接觸式鋼板搬運系統之整合式驅控………………… 81
6-2-1 驅控架構與控制策略……………………………. 81
6-2-2 模糊理論簡介……………………………………. 83
6-2-3 非同步控制之控制週期設計……………………. 84
6-2-4 定子磁極電流控制………………………………. 85
6-3 以模糊理論為基礎之氣隙控制器……………………… 86
6-3-1 氣隙控制架構………………….…………………. 86
6-3-2 氣隙控制之模糊控制理論設計…………………. 87
6-4 以模糊理論為基礎之鋼板速度控制器………………… 90
6-4-1 鋼板速度控制架構………………………………. 90
6-4-2 鋼板速度控制之模糊控制理論設計……………. 91

第七章 電動機驅動之軟硬體架構與實測結果………………………... 95
7-1 系統硬體架構…………………………………………… 95
7-1-1 數位訊號處理控制器……………………………. 96
7-1-2 RS-232通訊界面……………..…………………… 98
7-1-3 電流感測元件……………………………………. 99
7-1-4 三相電源PWM開關電路………………………. 100
7-2 系統軟體架構…………………………………………… 102
7-2-1 Simulink之應用……………..……………………. 102
7-2-2 SCI之應用….…………………………………….. 104
7-2-3 Real Time Data Exchange (RTDX) 之應用...……. 104
7-3 系統實測與分析………………………………………… 105
7-3-1 系統開迴路驅動之實驗與分析.............................. 105
7-3-2 閉迴路之氣隙控制實驗與分析………………….. 107
7-3-3 閉迴路之鋼板速度控制實驗與分析…………….. 110
7-3-4 閉迴路之綜合驅控實驗與分析………………….. 113

第八章 結論……………………………………………………………... 118
8-1 討論與結論……………………………………………… 118
8-2 未來研究方向與建議…………………………………… 120

參考文獻………………………………………………………………….. 121
作者簡介與著作…………………………………………………………... 126
參考文獻 References
[1] A. E. Fitzgerald, C. Kingsley, J. Stephen, and D. Umans, Electric Machinery, McGraw-Hill, New York, U.S.A., 1992.
[2] P. K. Budig, “The application of linear motors,” Proceeding of the Power Electronics and Motion Control Conference 2000, IPEMC 2000, vol. 3, pp. 1336-1341, Beijing, China, Aug. 2000.
[3] E. J. Rothwell and M. J. Cloud, Electromagnetics, 2nd edition, CRC Press, New York, U.S.A., 2001.
[4] K. Fujisaki, K. Wajima, K. Sawada, and T. Ueyama, “Application of electromagnetic field techniques to steelmaking processes,” Nippon Steel Technical Report, no. 74, pp. 29-35, July 1997.
[5] K. Fujisaki., T. Uevama, T. Toh, M. Uehara, and S. Kobayashi, “Magneto hydro dynamic calculation for electromagnetic stirring of molten metal,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2120-2122, July 1998.
[6] V. Lambert, J. M. Galpin, H. R. Hackl, and N. P. Jacobson, ”New strong strand stirrer boosting quality for ferritic stainless steel,” Iron and Steel Technology, vol. 5, no. 7, pp. 71-79, July 2008.
[7] S. Fukushima, K. Okamura, T. Kase, and G. Prost, “A high-performance edge heater for the hot strip mill,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 854-858, Sept. 1993.
[8] A. V. Starck, A. Mühlbauer, and C. Kramer, Handbook of Thermo Processing Technologies: Fundamentals, Processes, Components, Safety, Vulkan-Verlag GmbH, Essen, Germany, 2005.
[9] R. Juergens and H. Behrens, “Electromagnetic strip stabilization in galvanizing lines,” Proceeding of the International Scientific Colloquium, pp. 243-246, Hannover, Germany, Oct. 2008.
[10] EMG-Group/Automation/Electro-Magnetic Strip Stabilization, http://www.emg-automation.com/en/automation/qs-systems/emass.html, 2009/07/04.
[11] K. Fujisaki, “Application of electromagnetic force to run out table,” IEEE Transactions on Industry Applications, vol. 37, no. 4, pp. 1105-1108, July 2001.
[12] T. Sawa and T. Kume, “Motor drive technology – history and visions for the future,” Proceeding of the IEEE 35th Annual Power Electronics Specialists Conference 2004, vol. 1, pp. 2-9, Aachen, Germany, June 2004.
[13] K. Fujisaki, J. Nakagawa, and H. Misumi, “Fundamental characteristics of molten metal flow control by linear induction motor,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4764-4766, Nov. 1994.
[14] F. Hollander, “Design and control for advanced run out table processing,” Iron Steel Engineering, vol. 48, no. 3, pp. 81-92, Mar. 1971.
[15] H. Hayahiya, N. Araki, J. E. Paddison, H. Ohsaki, and E. Masada, “Magnetic levitation of a flexible steel plate with a vibration suppressing magnet,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5052-5054, Sept. 1996.
[16] H. Hayashiya, T. Katayama, H. Ohsaki, and E. Masada, “Utilization of the normal force of a slim for non-contacting steel plate conveyance,” Proceeding of the IEEE 1997 International Magnetics Conference, BR-16, New Orleans, L.A., U.S.A., Apr. 1997.
[17] H. Hayashiya, D. Iizuka, H. Ohsaki, and E. Masada, “A novel combined lift and propulsion system for steel plate conveyance by electromagnets,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2093-2095, July 1998.
[18] H. Hayashiya, H. Ohsaki, and E. Masada, “A combined lift and propulsion system of a steel plate by transverse flux linear induction motors,” IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 4019-4021, Sept. 1999.
[19] C.-T. Liu, K.-S. Su, and J.-W. Chen, “Operational stability enhancement analysis of a transverse flux linear switched-reluctance motor,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3699-3702, Sept. 2000.
[20] D.-H. Kang, Y.-H. Jeong, and M.-H. Kim, “A study on the design of transverse flux linear motor with high power density,” Proceedings of the IEEE international Symposium on Industrial Electronics Conference 2001, pp. 707-711, Pusan, South Korea, June 2001.
[21] P. Mclntire and M. L. Mester, Nondestructive Testing Handbook: Volume 4 Electromagnetic Testing, American Society for Nondestructive Testing, U.S.A., 1986.
[22] C.-B. Ahn, K.-H. Kim, K.-C. Moon, K.-S. Jeong, H.-C. Kim, J.-J. Lee, C.-M. Hwang, and K. Sun, “Development of eddy current sensor systems in artificial heart for noncontact gap sensing,” Proceeding of the 27th IEEE-EMBS Annual International Conference, pp. 3913-3915, Shanghai, China, Sept. 2005.
[23] J. H. V. Lefebvre and C. Mandache, “Pulsed eddy current thickness measurement of conductive layers over ferromagnetic substrates,” International Journal of Applied Electromagnetics and Mechanics, vol. 27, no. 1-2, pp. 1-8, 2008.
[24] G. Sansoni, L. Biancardi, U. Minoni, and F. Docchio, “A novel adaptive system for 3-D optical profilometry using a liquid crystal light projector,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 4, pp. 558-566, Aug. 1994.
[25] P. D. Groot, “Unusual techniques for absolute distance measurement,” Optical Engineering, vol. 40, no. 1, pp. 28-32, Jan. 2001.
[26] A. Carullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors Journal, vol. 1, no. 2, pp. 143-147, Aug. 2001.
[27] H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Applied Optics, vol. 25, no. 17, pp. 2976-2980, Sept. 1986.
[28] G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 628-636, June 2000.
[29] G. Holzmüller, "Laser based dimensional measurement solutions for plate,” Proceedings of the 2001 Iron and Steel Exposition and AISE Annual Convention, pp. 2001-2003, Cleveland, U.S.A., Sept. 2001.
[30] C.-T. Liu, Y.-Y. Yang, and S.-Y. Lin, “Applications of optical image processing technique for steel mill non-contacting conveyance system operations,” IEICE Transactions on Electronics, vol. 91-C, no. 2, pp. 187-192, Feb. 2008.
[31] C.-Y. Hor, W.-C. Li, Y.-Y. Yang, S.-K. Kuo and J.-C. Liu, “The development of laser-based slab shape measuring system,” SEAISI Quarterly, vol. 36, no. 1, pp 63- 67, Sept. 2007.
[32] Y.-Y. Yang, C.-M. Chen, C.-Y. Hor, W.-C. Li, and J.-H. Wu, “Development of a camber measurement system in a hot rolling mill,” Proceeding of the 43th IEEE IAS Annual Meeting, IAS11p1, Edmonton, Alberta, Canada, Oct. 2008.
[33] W.-S. Gan, Y.-K. Chong, W. Gong, and W.-T. Tan, “Rapid prototyping system for teaching real-time digital signal processing,” IEEE Transactions on Education, vol. 43, no. 1, pp. 19-24, Feb. 2000.
[34] M. D. Seyer, RS-232 Made Easy : Connecting Computers, Printers, Terminals and Modems, 2nd Edition, Prentice-Hall, New Jersey, U.S.A., 1991.
[35] V. Ostovic, “A simplified approach to magnetic equivalent-circuit modeling of induction machines,” IEEE Transactions on Industry Applications, vol. 24, no. 2, pp. 308-316, Mar. 1988.
[36] COMSOL AB., COMSOL Multiphysics User’s Guide Version 3.4, Stockholm, Sweden, 2007.
[37] COMSOL AB., COMSOL Multiphysics Model Library Version 3.4, Stockholm, Sweden, 2007.
[38] COMSOL AB., AC/DC Module User’s Guide Version 3.4, Stockholm, Sweden, 2007.
[39] COMSOL AB., AC/DC Module Model Library Version 3.4, Stockholm, Sweden, 2007.
[40] A. Kovetz, The Principles of Electromagnetic Theory, Cambridge University Press, Cambridge, United Kingdom, 1990.
[41] C.-T. Liu, S.-Y. Lin, and Y.-Y. Yang, “Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application,” Journal of Magnetism and Magnetic Materials, vol. 290-291, pp. 1359-1362, Apr. 2005.
[42] 中國鋼鐵公司網頁/客戶服務/產品製造/產品介紹/鋼板產品, http://www.csc.com.tw/csc/pd/int_a.htm#,2009/07/012。
[43] R. Janaswamy, “A note on the TE/TM decomposition of electromagnetic fields in three dimensional homogeneous space,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2474-2477, Sept. 2004.
[44] C. Nicholson and J. A. Freeman, “Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum,” Journal of Neurophysiology, vol. 38, no. 2, pp. 356-368, Mar. 1975.
[45] K. S. Stroud and D. J. Booth, Engineering Mathematics, Industrial Press, New York, U.S.A., 2007.
[46] L. B. Trindade, A. C. F. vilela, A. F. F. Filho, M. T. M. B. Vihena, and R. B. Soares, “Numerical model of electromagnetic stirring for continuous casting billets,” IEEE Transactions on Magnetics, vol. 38, no. 6, pp. 3658-3660, Nov. 2002.
[47] J.-W. Choi and S.-K. Sul, “Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 179-185, Nov. 1998.
[48] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, Wiley-IEEE Press, Piscataway, U.S.A., 2002.
[49] A. S. Bazzanella and R. Reginatto, “Robustness margins for indirect field-oriented control of induction motor,” IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 1226-1231, June 2000.
[50] G.-K. Singh, D. K. P. Singh, K. Nam, and S.-K. Lim, “A simple indirect field-oriented control scheme for multiconverter-fed induction motor,” IEEE Transactions on Industrial Electronics, vol. 52, no.6, pp. 1653-1659, Dec. 2005.
[51] C.-T. Liu, K.-S. Su, and M.-H. Lee, “Three-dimensional field and side-force design analyses of a transverse flux linear switched-reluctance machine,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2132-2134, July 1998.
[52] Y.-A. Kwon and S.-H. Kim, “A new scheme for speed-sensorless control of induction motor,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 545-440, June 2004.
[53] M. Saejia and S. Sanwongwanich, “Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation,’’ IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 162-177, Feb. 2006.
[54] Y.-Y. Yang, On-line Gap Measurement Techniques for Steel Mill Non-contacting Conveyance System, Ph. D. Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2009.
[55] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, Nov. 1965.
[56] J. J. Buckley, “Theory of the fuzzy controller: An introduction,” Fuzzy Set and Systems, vol. 51, no. 3, pp. 249-258, Nov. 1992.
[57] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, Chandler, U.S.A., 1996.
[58] 中華生產力中心技術引進服務組編譯,Fuzzy 控制,全華科技圖書股份有限公司,台北,台灣,1992。
[59] Spectrum Digital, Inc., eZdspTM F2812 Technical Reference, Stafford, U.S.A., 2003.
[60] LEM, Inc., LEM Current Transducer LTS 6-NP Datasheet, Machida, Japan, 2006.
[61] The MathWorks, Inc., Target Support PackageTM TC2 3, Natick, U.S.A., 2008.
[62] V. Larsson, Development of a Real Time Test Platform for Motor Drive Algorithms, Master Thesis, Lulea University of Technology, Lulea, Sweden, 2008.
[63] C.-L. Lin, Modeling and Analysis of a Tubular Permanent Magnet Generator with Halbach Array, Master’s Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code