Responsive image
博碩士論文 etd-0825109-213840 詳細資訊
Title page for etd-0825109-213840
論文名稱
Title
以奈米鑄造製備奈米二氧化鈦及結構分析
Synthesis and Structural Analysis of Nano-size TiO2 via Nanocasting Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-08-25
關鍵字
Keywords
二氧化鈦
TiO2-AP-SBA-15
統計
Statistics
本論文已被瀏覽 5667 次,被下載 15
The thesis/dissertation has been browsed 5667 times, has been downloaded 15 times.
中文摘要
因為Ti的前驅物會快速反應集結成大顆粒,要得到均勻的TiO2奈米顆粒是比較困難。本論文主要使用SBA-15或AP-SBA-15當作模板,利用注入法灌入TTIP溶液,以模板孔道限制TiO2奈米顆粒成長,在管爐內溫度550℃下鍛燒6hr,然後利用HF移除模板,製備出anatase 的TiO2奈米顆粒。合成的試片藉由XRD、TEM、FTIR和BET等儀器作性質及形態鑑定。
從TEM圖中可以發現TiO2奈米顆粒有較小體積且分散在SBA-15的孔道裡,接著利用HF將模板移除後可以得到TiO2奈米顆粒,而這些顆粒直徑為9 nm左右。SBA-15經過APTS處理後,能更容易吸附Ti進入孔道內,之後水解形成TiO2留在孔道內,而附著在外壁的TiO2量減少,經過鍛燒及HF移除模板,得到均一的anatase TiO2奈米顆粒,直徑約5 nm左右。
Abstract
TiO2 nanoparticles were successfully synthesized by a wet impregnation method using SBA-15 or AP-SBA-15 as the template for confining the growth of TiO2 nanocrystals followed by acclimation at 550 ℃ in muffle furnace for 6 hrs. These uniform nano-sized TiO2 particles are difficult to prepare using the conventional sol-gel process since the decomposition of the Ti precursor proceeds rapidly to form large aggregates, resulting in a wide particle size distribution. The as-synthesized samples were characterized with powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), and nitrogen adsorption isotherm.
Results from TEM reveal that the TiO2 nanoparticles are highly dispersed in the channels of SBA-15; subsequent removal of the SBA-15 channels with HF gives the pure TiO2 nanoparticles having a diameter of ~ 9 nm. On the other hand, the bulk TiO2 outside the SBA-15 channels mainly forms aggregated large TiO2 particles. Prior treatment of SBA-15 surface with the coupling agent APTS (AP-SBA-15) enhances the easy chemosorption of a great number of titanium. Subsequent hydrolysis of the anchored Ti complexes and calcinations of the amorphous TiO2, anatase TiO2 nanocrystals yields uniform TiO2 nanoparticles having diameter of ~ 5 nm, as compared to the unconfined bulk TiO2 of 15~50 nm in diameter.
目次 Table of Contents
摘要……………………………………….………………. I
Abstract ………………………………………………………….... II
總目錄………………………………...…………….……..III
圖目錄………………………………………………..…….V
表目錄……………………………………….…………….IX
第一章 前言………………………………………………..1
第二章 文獻回顧…………………………………………..4
2.1 中孔洞材料…………..……………………………….4
2.1.1 界面活性劑 ( surfactant )……………....................5
2.1.2 Self –Assembling………………………………..8
2.1.3 mesostructure反應機制……………..………….....9
2.1.4 Sol-gel過程……….………………………………12
2.1.5中孔洞的silicates…………………………………..14
2.1.6 SBA系列介紹…….………….…………………….. 15
2.1.7 M41S系列介紹……….……..……..……………….17
2.1.8 MCM-41和SBA-15文獻鑑定.……………………..18
2.2 Nanocasting理論基礎……..……………………...20
2.2.1前驅物和模板關係………………………………..21
2.2.2 Nanocasting相關文獻………………………23
第三章 實驗方法………………………………………...32
3.1 實驗藥品……………………………………………...32
3.2 實驗流程與合成方法..……………………………...33
3.2.1 SBA-15…………………………………..…33
3.2.2 AP-SBA-15…………………………………..33
3.2.3 TiO2-SBA-15………….………….………….36
3.2.4 TiO2-AP-SBA-15…………………………...38
3.2.5移除模板…………………..………………...39
第四章 結果與討論………………………………………40
4.1 X-ray………………………………………….………40
4.2活化SBA-15與AP-SBA-15 FTIR…………………...43
4.3 SBA-15與AP-SBA-15 TEM………………………….44
4.4 TTIP重量比對模板及移除模板後TiO2顆粒的影響46
4.5接枝官能基APTS效果…………………………..…….54
4.6 HF腐蝕未完全移除模板……………………………..61
4.7 BET討論…………………………………………..…64
第五章 結論………………………………………………71
參考文獻…………………………………………………………..73

圖 目 錄
Figure 2.1 界面活性劑在水中普遍合成的液晶模板形態介紹………..6
Figure 2.2 界面活性劑與無機前驅物的自我組裝反應….….…………8
Figure 2.3 界面活性劑與silica的各種不同界面形態介紹…………...10
Figure 2.4 SBA-15由有機界面活性劑及無機前驅物形成的概略表示圖
………………………...………………………………..11
Figure 2.5 M41S中孔材料的圖解 : (a) MCM-41 (b) MCM-48
(c) MCM-50……………………………….………………15
Figure 2.6 液晶模板機制中的兩種可能路徑…………17
Figure 2.7 SBA-15 X-ray圖….....………………………18
Figure 2.8 MCM-41 X-ray圖……………………………..18
Figure 2.9 SBA-15各種不同孔徑的有序中孔洞TEM圖……………...19
Figure 2.10 Nanocasting 的示意圖..………………...21
Figure 2.11 SBA-15與CMK-3 (奈米碳柱)低角度X-ray圖……………25
Figure 2.12 (a) 低倍率下CMK-5奈米碳管 (b) 高倍率下CMK-5奈米
碳管的TEM圖 (c) 奈米碳管模組………………………..25
Figure 2.13 CMK-5各種不同方向拍攝的SEM圖………26
Figure 2.14 In2O3 / SBA-15和 Co3O4 / SBA-15X-ray圖……………....27
Figure 2.15 以中孔洞的silica為模板,製備金屬氧化物的奈米線的流程示意..28
Figure 2.16 (a) In2O3 / SBA-15 (b) 移除SBA-15剩下的In2O3奈米線TEM圖…………………………………….29
Figure 2.17 (a) CeO2 / SBA-15的TEM圖(b) CeO2奈米顆粒HRTEM圖
(c) CeO2 / SBA-15 [100]面 (d) CeO2 / SBA-15 [111]面的
TEM圖………………………………………..…29
Figure 2.18 (a) FDU模板 [100]面及 (b) [111]面 (c) Au / FDU
(d) 移除FDU後Au的顆粒 (e) Au / FDU [100]面
(f) Au / FDU [111]面的TEM圖……………………………30
Figure 2.19 CsHPW / SBA-15巨觀SEM圖及微觀移除模板後CsHPW 奈米顆粒的SEM圖….……….31
Figure 3.1 SBA-15實驗流程圖……………………...34
Figure 3.2 AP-SBA-15 實驗流程圖………………...35
Figure 3.3活化後的SBA-15經過APTS處理後的示意圖…………....36
Figure 3.4 TiO2-SBA-15的實驗流程圖...…………...…37
Figure 3.5 TiO2-AP-SBA-15的實驗流程圖………….…38
Figure 3.6 TiO2-SBA-15-HF or TiO2-AP SBA-15-HF實驗流程圖…....39
Figure 4.1 SBA-15 X-ray圖……………………………40
Figure 4.2 TiO2-SBA-15系列 X-ray圖……………….…42
Figure 4.3 TiO2-AP-SBA-15系列 X-ray圖……………...42
Figure 4.4活化SBA-15與AP-SBA-15 FTIR圖………...43
Figure 4.5 (a) SBA-15平行孔洞軸 (b) SBA-15垂直孔洞軸
(c) AP- SBA-15 垂直孔洞軸TEM圖….………..……….45
Figure 4.6 SBA-15在不同方向TEM示意圖……………46
Figure 4.7 (a) TiO2-S-40 (b) TiO2-S-60 (c) TiO2-S-80 TEM圖….…..…47
Figure 4.8 Figure 4.7的EDS分析…….……………….48
Figure 4.9 (a) TiO2-S-40-HF (b) TiO2-S-60-HF (c) TiO2-S-80-HF TEM圖……………….…………………...49
Figure 4.10 (a) TiO2-AP-S-40(b) TiO2-AP-S-60 (c) TiO2-AP-S-80 TEM圖……………………….51
Figure 4.11. Figure 4.10的EDS分析………………..…52
Figure 4.12 (a) TiO2-AP-S-40-HF (b) TiO2-AP-S-60-HF
(c) TiO2-AP-S-80-HF…………………………………....53
Figure 4.13 (a) SBA-15 (b) TiO2-S-60 (c) AP-SBA-15 (d) TiO2-AP-S-60 TEM圖………………………….55
Figure 4.14. Figure 5.13的EDS分析……………….56
Figure 4.15 (a) SBA-15 (b) TiO2-S-60 (c) TiO2-AP-S-60 TEM圖…..…57
Figure 4.16 (a) Bulk TiO2 (b) TiO2-S-60-HF (c) TiO2-AP-S-60-HF TEM圖………………………….59
Figure 4.17. Figure 4.16的EDS分析…………………..60
Figure 4.18 TiO2-AP-S-60-HF示意圖………………….60
Figure 4.19 TiO2-S-60-HF (未完全腐蝕)…………....62
Figure 4.20 TiO2-AP-S-60-HF (未完全腐蝕)………..62
Figure 4.21 TiO2-AP-S-80-HF (未完全腐蝕)………..63
Figure 4.22 SBA-15吸拖附曲線及BJH分析, SBET = 276 m2/g Dave = 16 nm…………………………..…65
Figure 4.23 AP-SBA-15吸拖附曲線及BJH分析, SBET = 235 m2/g Dave = 15 nm………………………………..66
Figure 4.24 TiO2-S-60吸拖附曲線及BJH分析, SBET = 196 m2/g Dave = 10 nm……………………………..67
Figure 4.25 TiO2-AP-S-60吸拖附曲線及BJH分析, SBET = 137 m2/g Dave = 9 nm……………………...68
Figure 4.26 Bulk TiO2吸拖附曲線, SBET= 3 m2/g....69
Figure 4.27 TiO2-AP-S-60-HF吸拖附曲線, SBET= 72 m2/g……………69






表 目 錄
Table 2.1 不同孔洞大小定義的無機孔洞材料………………………...5
Table 2.2 界面活性劑與無機前驅物之間不同作用力形成各種不同的 中孔材料…………………………………………………….11
Table 3.3 各種不同碳的mesostructure材料…….…….24
Table 5.1 各個實驗樣品孔洞壁厚及移除模板後TiO2顆粒大小分析
…………………………………………………..………61
Table 5.2 各個實驗樣品BET分析…………………………………….70
參考文獻 References
[1] (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature., 1992, 359, 710; (b) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. –W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
[2] Zhao, D. Feng, J. Huo, Q. Melosh, N. Fredrickson, G. H. Chemlka, B.
F. Strucky, G. D. Science., 1998, 279, 548.
[3] R. Ryoo, S. H. Joo and S. Jun, J. Phys. Chem. B., 1999, 103 ,7743.
[4] F. Schiuth, Chem. Mater., 2001, 13, 3184.
[5] Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D, Nature 1994, 368, 317.
[6] Huo, Q. M., D. I. ; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. , Chem. Mater., 1994, 6, 1176.
[7] Ciesla, U.; Schacht, D. G.; Leon, R.; Petroff, P. M.; Stucky, G. D. U., H.; Schuth, F., Chem. Commun. 1994, 1387.
[8] McCusker, L. B.; Baerlocher, E. J.; Bulow, M, Zeolites., 1991, 11, 308.
[9] Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C, Nature., 1988, 331, 698.
[10] Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1995, 34, 2014.
[11] Myers, D., Surfaces, Interfaces, and Colloids: Principles and applications.
Wiley-Vch. New York, 1999; Vol. 2nd ed,.
[12] Li-Heng Kao and Dr. Tzu-Chien Hsu, Synethsis and mesostructural Characterization of siliceous and non-siliceous materials.
[13] Sumiya, S.; Oumi, Y.; Uozumi, T.; Sano, T. J. Mater. Chem.. 2001, 11, 1111.
[14] Todros, T.; Surfactants, F. Academic Press : London, 1984.
[15] Ruokolainen, J.; Mäkinen, R.; Torkkeli, M.; Mäkelä, T.; Serimaa, R.; ten Brinke,
G.; Ikkala, O, Science., 1998, 280, 557.
[16] Hamley, I. W., Nanotechnology with Soft Materials. Angew. Chem. Int. Ed. 2003, 42, 1692.
[17] Park, C.; Yoon, J.; Thomas, E. L, Polymer., 2003, 44, 6725.
[18] Whitesides, G. M.; Mathias, J. P.; Seto, C. T, Science., 1991, 254, 1312.
[19] Whitesides, G. M.; Crzybowski, B, Science., 2002, 295, 2418.
[20] Brehmer, M.; Mao, G.; Ober, C. K.; Zentel, R, Macromolecular Symposia., 1997,
117, 175.
[21] Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.;
Petroff, P. M.; Schüth, F.; Stucky, G. D., Nature 1994, 368, 317.
[22] Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chem. Rev. 2002,
102, 4093.
[23] Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.;
Petroff, P. M.; Schüth, F.; Stucky, G. D, Nature., 1994, 368, 317.
[24] Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Science 1995, 269, 1242.
[25] Bagshaw, S. A.; Pinnavaia, E.; Pinnavaia, T. J., Angew. Chem. Int. Ed. Engl.,
1996, 35, 1102.
[26] http://www.sigmaaldrich.com/img/assets/15402/Detergent_Selection_Table.pdf
[27] Huo, Q. M., D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.;
Firouzi, A.; Chmelka, B. F.; Schüth, F.; Stucky, G. D. , Chem. Mater. 1994, 6,
1176.
[28] Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D., Science 1995, 268, 1324.
[29] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., J. Am. Chem. Soc.
1998, 120, 6024.
[30] Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1995, 34, 2014.
[31] Sayari, A., Stud. Surf. Sci. Catal., 1996, 102, 1.
[32] Reddy, J. S.; Sayari, A, Catal. Lett,., 1996, 38, 219.
[33] Yada, M.; Machida, M.; Kijima, T., Chem. Commun. 1996, 769.
[34] Ulagappan, N.; Rao, C. N. R, Chem. Commun., 1996, 1685.
[35] Attard, G. S.; Glyde, J. C.; Goltner, C. G, Nature., 1995, 378, 366.
[36] Antonelli, D. M.; Ying, J. Y., Angew. Chem. Int. Ed. Engl. 1996, 108, 461.
[37] Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Angew. Chem. Int. Ed., 1999, 38, 56.
[38] Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of
Sol-Gel Processing. Academic Press, San Diego, 1990.
[39] Livage, J.; Henry, M.; Sanchez, C., Prog. Solid State. Chem. 1988, 18, 259.
[40] Klein, L. C. E., : Park Ridge, Sol-Gel Technology. Noyes Publications. NJ, 1988.
[41] Hench, L. L.; West, J. K., Chem. Rev 1990, 90, 33.
[42] Sayari, A.; Liu, P, Microporous Mater., 1997, 12,, 149.
[43] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppaard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834
[44] Zuna, R. Colloids. Surf., 1997, 27, 123.
[45] Chen, C.; Li, H.; Daris, M. E, Microporous Materals., 1993, 2, 17.
[46] B. J. Scott, G. Wirnsberger and G. D. Stucky, Chem. Mater., 2001, 13, 3140.
[47] R. Ryoo, S. H. Joo and S. Jun, J. Phys. Chem. B., 1999, 103, 7743.
[48] S. L. Burkett, S. D. Sims and S. Mann, Chem. Commun., 1996, 1367.
[49] B. Tian, S. Che, Z. Liu, X. Liu, W. Fan, T. Tatsumi, O. Terasaki and D. Zhao,
Chem. Commun., 2003, 2726.
[51] R. Ryoo, S. H. Joo, S. Jun, T. Tsubakiyama and O. Terasaki, in Zeolites and
mesoporous materials at the dawn of the 21st century, Elsevier, Montpellier,
France, 2001.
[52] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. ohsuna and O.
Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
[53] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature.,
2001, 412, 169.
[54] S. Che, K. Lund, T. Tatsumi, S. Iijima, S. H. Joo, R. Ryoo and O. Terasaki,
Angew. Chem., Int. Ed., 2003, 42, 2182.
[55] T. W. Kim, I. S. Park and R. Ryoo, Angew. Chem., Int. Ed., 2003, 42, 4375.
[56] H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, M. Li, Y. Meng and D. Zhao, J.
Phys. Chem. B, 2004, 108, 17230.
[57] R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater., 2001, 13, 677.
[58] H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu and D. Zhao,
Chem. Commun., 2002, 2842.
[59] S. Che, A. E. Garcia-Bennett, X. Liu, R. P. Hodgkins, P. A. Wright, D. Zhao, O.
Terasaki and T. Tatsumi, Angew. Chem., Int. Ed., 2003, 42, 3930.
[60] J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angew. Chem., Int. Ed., 2003, 42, 3146.
[61] (a) F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun., 2003, 2136; (b) Y.
Sakamoto, T. W. Kim, R. Ryoo and O. Terasaki, Angew. Chem., Int. Ed., 2004, 43, 5231.
[62] J. S. Lee, S. H. Joo and R. Ryoo, J. Am. Chem. Soc., 2002, 124, 1156.
[63] B. J. Scott, G. Wirnsberger and G. D. Stucky, Chem. Mater., 2001, 13, 3140.
[64] B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu and D. Zhao, Adv. Mater., 2003, 15, 1370
[65] H. Yang, Q. Shi, B. Tian, Q. Lu, F. Gao, S. Xie, J. Fan, C. Yu, B. Tu and D.
Zhao, J. Am. Chem. Soc., 2003, 125, 4724.
[66] Anderson, M. W., Zeolites 1997, 19, 220.
[67] D.Y. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
[68] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science., 1998, 279, 548.
[69] Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K, Adv. Mater. 1999, 11, 1307.
[70] Tsai C. C.; Teng H. S, Chem. Mater., 2004, 16, 4352.
[71] Sun X.; Li Y, Chem. Eur. J., 2003, 9, 2229,.
[72] Chien-Cheng Tsai, Hsisheng Teng, Chem. Eur. J., 2005, 35, 970.
[73] L. Vradman, M.V. Landau,,∗ M. Herskowitz, V. Ezersky, M. Talianker, S,
Chem. Eur. J., 2002, 21, 450
[74] John S. Lettow,† Yong Jin Han,‡ Patrick Schmidt-Winkel,‡ Peidong Yang,‡
Dongyuan Zhao,‡ Galen D. Stucky,*,‡ and Jackie Y. Ying*, J. Mater. Chem.,
2000, 9, 540.
[75] Haifeng Yang and Dongyuan Zhao, J. Mater. Chem., 2005, 15, 1217.
[76] M. Adachi, Y. Murata, S. Yoshikawa, Chem. Lett. 2000, 8, 942.
[77] X.P. Gao, H.Y. Zhu, G.L. Pan, S.H. Ye, Y. Lan, F. Wu, D.Y. Song, J. Phys.
Chem. B., 2004, 108, 2868.
[78] J.G. Yu, X.J. Zhao, Q.N. Zhao, Thin Solid films., 2000, 379, 7.
[79] J.G. Yu, J.C. Yu, M.K.P. Leung,W.K. Ho, B. Cheng, X.J. Zhao, J.C. Zhao, J.
Catal. 2003, 217, 69.
[80] J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Appl. Catal. B., 2005, 60, 211.
[81] J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho, J. Phys. Chem. B 2003, 107, 13871.
[82] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 1999, 11, 1307.
[83] J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angew. Chem., Int. Ed., 2003, 42, 3146.
[84] P.Madhusudhan, S. Kababya, S.Vega, M.V. Landau, Mole. Catal., A 2007, 275, 214
[85] E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J.R. Morante, B. Tian, T. Bo, D. Zhao., Sens. Actuator B 2005, 109, 57.
[86] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and
O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.4.244
論文開放下載的時間是 校外不公開

Your IP address is 3.15.4.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code