Responsive image
博碩士論文 etd-0825110-134259 詳細資訊
Title page for etd-0825110-134259
論文名稱
Title
雙躍進合作式通訊網路之合作機制設計
Selective Cooperation for Dual-Hop Cooperative Communication Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-08-25
關鍵字
Keywords
合作的門檻、解碼後傳送、放大後傳送、直接傳送
cooperative thresholds, amplify-and-forward, decode-and-forward, direct transmission
統計
Statistics
本論文已被瀏覽 5746 次,被下載 4
The thesis/dissertation has been browsed 5746 times, has been downloaded 4 times.
中文摘要
在合作式網路通訊系統之中,不論是在多個中繼站中選擇最佳的一個來幫助傳送端傳送訊號、或是中繼站選擇是否幫助傳送端傳送訊號,現有的文獻所探討的系統,都是根據瞬間通道狀況來做判斷,但是這樣的方法會有很高的複雜度,尤其當通道劇烈改變時,系統沒有足夠的時間作出決定。
我們在此研究中提出了利用通道統計特性選擇直接傳送 (Direct Transmission,DT) 、放大後傳送(Amplify-and-Forward, AF) 或是解碼後傳送(Decode-and-Forward, DF) 的方式。在本論文之中,系統的效能分析是依據通道的平均容量,而不論中繼站使用放大後傳送(AF)還是解碼後傳送(DF),我們都利用了幾個不同的不等式化簡通道容量平均的理論值,並且求得選擇合作的門檻。
本論文也藉由電腦模擬來驗證理論推導的結果,由模擬圖分析可知使用合作門檻的傳送方式可以有效的選擇甚麼時候該使用合作式通訊。
Abstract
In cooperative communications systems, multiple relays selection scheme and adaptive relay selection scheme are usually adopted. In both schemes, the system makes selections based on instantaneous channel status. However, such schemes have an extremely high computational complexity. In particular, when the channels experience fast fading, the systems do not have sufficient to make a correct decision.

In this thesis, statistical channel properties are utilized in deciding whether cooperative transmission should be adopted or not. In our investigations, the cooperative mechanism includes direct transmission (DT), decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying. The Ergodic capacity is adopted throughout the theoretical analyses. In addition, a number of approximated thresholds are derived to assist the decision process.

Simulation experiments are conducted to verify the derived results. It is shown that the proposed transmission scheme using the cooperative thresholds is effective in deciding when the cooperative communication is necessary.
目次 Table of Contents
致謝…….................................................................................................................................... I
中文摘要.. ................................................................................................................................ II
Abstract…. .............................................................................................................................. III
Chapter 1 Introduction ............................................................................................................. 1
1.1 Introduction of Cooperative Network ......................................................................... 1
1.2 Introduction of Cooperative Transmission Protocols ................................................... 2
1.3 Literature Review.......................................................................................................... 3
Chapter 2 System Model ........................................................................................................ 10
2.1 Direct Transmission System ....................................................................................... 10
2.2 Conventional Single-Relay Cooperative System ........................................................ 11
2.2-1 Ergodic Capacity of Decode-and-Forward Relaying ..................................... 13
2.2-2 Ergodic Capacity of Amplify-and-Forward Relaying .................................... 16
Chapter 3 Approximate Threshold Functions for Selective Cooperation ......................... 19
3.1 Decode-and-Forward Relaying and Direct Transmission ........................................... 19
3.1-1 Approximation of Exponential Integral .......................................................... 19
3.1-2 Approximation by Jensen’s Inequality ........................................................... 21
3.2 Amplify-and-Forward Relaying and Direct Transmission ......................................... 22
3.2-1 Approximation of Exponential Integral .......................................................... 22
3.2-2 Approximation of Jensen’s Inequality ............................................................ 23
3.3 Hybrid Cooperative Protocol and Direct Transmission .............................................. 26
Chapter 4 Simulation Results ................................................................................................ 27
Chapter 5 Conclusions and Future Works ........................................................................... 40
5.1 Conclusions ................................................................................................................. 40
5.2 Future Works .............................................................................................................. 40
References ............................................................................................................................... 41
Abbreviations .......................................................................................................................... 45
參考文獻 References
[1] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572-584, Sep. 1979.
[2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I: system description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1972-1938, Nov. 2003.
[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part II: implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
[4] Y. Song, H. Shin, and E. K. Hong, “MIMO cooperative diversity with scalar-gain amplify-and-forward relaying,” IEEE Trans. Commun., vol. 57, no. 7, pp.1932-1938, Jul. 2009.
[5] W. Su and X. Liu, “On optimum selection relaying protocols in cooperative wireless networks,” IEEE Trans. Commun., vol. 58, no. 1, pp. 52-57, Jan. 2010.
[6] S. S. Ikki and M. H. Ahmed, “Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection,” IEEE Trans. Commun., vol.58, no. 1, pp. 68-72, Jan. 2010.
[7] H. Mheidat and M. Uysal, “Impact of receive diversity on the performance of amplify-and-forward relaying under APS and IPS power constraints,” IEEE Communs. Lett., vol. 10, no. 6, pp. 468-470, Jun. 2006.
[8] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless relaying channels,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1820-1830, Oct. 2004.
[9] A. K. Sadek, W. Su, and K. J. R. Liu, “Multinode cooperative communications in wireless networks,” IEEE Trans. Signal Process., vol. 5, no. 1, pp. 341-355, Jan. 2007.
[10] S. S. Ikki, M. Uysal, and M. H. Ahmed, “Performance analysis of incremental-best-relay amplify-and-forward technique,” in Proc. IEEE Global Telecommunications Conference, Honolulu, HI, Nov. 2009.
[11] S. S. Ikki, M. Uysal, and M. H. Ahmed, “Performance analysis of incremental-relay-selection decode-and-forward technique,” in Proc. IEEE Global Telecommunications Conference, Honolulu, HI, Nov. 2009.
[12] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[13] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fading relay channels: performance limits and space–time signal design,” IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp.
1099-1109, Aug. 2004.
[14] Y. Ding, K. J. Zhang, and K. M. Wong, “Ergodic channel capacities for the amplify-and-forward half-duplex cooperative systems,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 713-730, Feb. 2009.
[15] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection," IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659-672, Mar. 2006.
[16] W. P. Siriwongpairat, T. Himsoon, S. Weifeng, and K. J. R. Liu, “Optimum threshold-selection relaying for decode-and-forward cooperation protocol,” in Proc. IEEE Wireless Communications and Networking Conference, Las Vegas, NV, Apr. 2006, vol. 2, pp. 1015-1020.
[17] L. Sun, T. Zhang, L. Lu, and H. Niu, “Cooperative communications with relay selection in wireless sensor networks," IEEE Trans. Consum. Electron., vol. 55, no. 2, pp.513-517, Apr. 2009.
[18] W. Choi, D. Kim, and B. H. Kim, “Adaptive multi-node incremental relaying for hybrid-ARQ in AF relay networks,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 505-511, Feb. 2010.
[19] I. Krikidis, J. Thompson, S. Mclaughlin, and N. Goertz, “Max-min relay selection for legacy amplify-and-forward systems with interference,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3016-3027, Jun. 2009.
[20] A. Adinoyi, Y. Fan, H. Yanikomeroglu, H. V. Poor, and F. Al-Shaalan, “Performance of selection relaying and cooperative diversity,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5790-5795, Dec. 2009.
[21] A. Bletsas, H. Shin, and M. Z. Win, ”Outage optimality of opportunistic amplify-and-forward relaying,” IEEE Communs. Lett., vol. 11, no. 3, pp. 261-263, Mar. 2007.
[22] A. S. Ibrahim, A. K. Sadek, S. Weifeng, and K. J. R. Liu, “Cooperative communications with relay-selection when to cooperate and whom to cooperate with,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2814-2827, Jul. 2008.
[23] F. A. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. S. Thompson, and I. D. Marsland, “Threshold selection for SNR-based selective digital relaying in cooperative wireless networks,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4226-4237, Nov. 2004.
[24] Bo Gui, Lin Dai, and L. J. Cimini, “Selective relaying in cooperative OFDM systems: two-hop random network,” in Proc. IEEE Wireless Communications Networking Conference, Las Vegas, NV, Apr. 2008, pp. 996-1001.
[25] IEEE 802.11n, Draft 4.0 - Wireless LAN Media Access Control and Physical Layer Specifications: Enhancements for Higher Throughput, Mar. 2008.
[26] D. G. Brennan, “Linear diversity combining techniques,” in Proc. IEEE, vol. 91, no. 2, pp. 331-356, Feb. 2003.
[27] M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1165-1181, Jul. 1999.
[28] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic, 1994.
[29] L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. SPIE Press, 1998.
[30] Y. Han, S. H. Ting, and C. K. Ho, ” Moments of harmonic mean and rate analysis for two-way amplify-and-forward relaying,” in Proc. IEEE International Conference on
Communications Workshops, Beijing, May 2008, pp. 365-369.
[31] M. O. Hasna and M. S. Alouini, “Harmonic mean and end-to-end performance of transmission systems with relays,” IEEE Trans. Commun., vol. 52, no. 1, pp. 130-135, Jan. 2004.
[32] W. C. Choi, S. Kim, S. R. Jin, and D. J. Park, “Average approach to amplify-and-forward relay networks,” International Symposium on Communications and Information Technology 9th, pp. 1195-1196, Sept. 2009.
[33] S. Weifeng and L. Xin, “On optimum selection relaying protocols in cooperative wireless networks,” IEEE Trans. Commun., vol. 58, no. 1, pp. 52-57, Jan. 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.181.231
論文開放下載的時間是 校外不公開

Your IP address is 18.191.181.231
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code