Responsive image
博碩士論文 etd-0825110-151604 詳細資訊
Title page for etd-0825110-151604
論文名稱
Title
分散式天線架構下多傳單收正交分頻多工系統中載波間干擾自我消除技術之研究
ICI Self-Cancellation in MISO-OFDM with Distributed Antenna
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-08-25
關鍵字
Keywords
分散式天線、載波間干擾、正交分頻多工、自我消除
self-cancellation, inter-carrier interference (ICI), Orthogonal frequency division multiplexing (OFDM), distributed antenna
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
在分散式傳送天線系統架構下,不同的傳送端具有各自的載波頻率偏移,因此在接收端的混合訊號中,會存在多個不同載波頻率偏移所產生的干擾。為了能夠有效對抗多個載波頻率偏移所造成的干擾,本篇論文提出了一個干擾自我消除的方法。在我們提出的架構之中,兩個不同的中繼站分別使用不同的載波來傳送訊號,並且在接收端結合中繼站所傳來的訊號,實現載波間干擾的自我消除。
另一方面,為了能讓系統達到較好的效能,在接收端時域所接收到的訊號,會進行粗略地載波頻率偏移補償,傳統的做法是補償各個頻率偏移量的中間值。補償中間值雖然是一個簡單的做法,但是並不能使系統效能達到最佳化,因此本篇論文的另一個重點,便是基於最大化平均訊號對干擾能量比的準則,由理論推導出最佳載波頻率偏移補償值,此最佳補償值與通道狀況以及各自的載波頻率偏移有關。
最後,我們也透過模擬驗證,我們所提出的架構在相對載波頻率偏移不超過0.3時,能夠有效的降低位元錯誤率;我們也經由電腦模擬,比較補償載波頻率偏移之中間值以及最佳值對於系統效能的差異。
Abstract
In this thesis, we investigate a wireless communications system with distributed transmit antennas. Under such system scenario, the received signal has multiple carrier frequency offsets (CFOs) since each transmitter has its own oscillator, leading to serious inter-carrier interference (ICI) at the receiver end. Therefore, an ICI self-cancellation scheme is proposed in this thesis, where two different relay nodes use different sub-carriers. When the signals from different relay nodes are combined at the destination node, the ICI self-cancellation can be achieved.
In addition, the quality of the received signal can be further improved if the residual CFO can be properly compensated. Traditionally, the medium value of the various CFOs is taken for compensation because of its simplicity. However, a medium value does not result in the optimal performance. In this thesis, a close form expression of optimal CFO is derived to maximize the average signal to interference power ratio. It is shown that the optimal CFO compensation is a function of channel state and individual CFOs.
Simulation experiments are conducted to investigate the performance of the proposed scheme. It is shown that the system bit error rate can be substantially improved when the CFO is less than 0.3 subcarrier spacing.
目次 Table of Contents
致謝 .................................................................................................................................. I
中文摘要 .......................................................................................................................... II
Abstract ............................................................................................................................ III
目錄 ............................................................................................................................... IV
圖目錄 ............................................................................................................................ VI
第 一 章 導論............................................................................................................ 1
1.1 研究動機 ........................................................................................................ 2
1.2 論文架構 ........................................................................................................ 3
第 二 章 正交分頻多工系統 ................................................................................... 4
2.1 正交分頻多工系統架構 ................................................................................ 4
2.2 分散式多傳單收系統架構 ............................................................................ 7
第 三 章 傳統載波間干擾自我消除之架構 ......................................................... 10
3.1 單一天線載波間干擾自我消除之架構 ...................................................... 10
3.2 既有的分散式天線載波間干擾自我消除之架構 ...................................... 12
第 四 章 既有的求解最佳補償載波頻率偏移量 ................................................. 18
第 五 章 多重載波間干擾自我消除之技術 ......................................................... 20
5.1 多重載波間干擾消除之調變方式 .............................................................. 20
5.2 平均訊號對干擾功率之比值 ...................................................................... 21
5.3 平均載波間干擾功率的上限邊界 .............................................................. 23
5.4 求解最佳補償載波頻率偏移量 .................................................................. 29
第 六 章 模擬結果 ................................................................................................. 32
第 七 章 結論.......................................................................................................... 42
參考文獻 ......................................................................................................................... 43
中英對照表 ..................................................................................................................... 46
縮寫 ................................................................................................................................ 49
參考文獻 References
[1] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct.
1998.
[2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part I, II,”
IEEE Trans. Commun., vol. 51, pp. 1927–1948, Nov. 2003.
[3] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for
exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory,
vol. 49, no. 10, pp. 2415–2425, Oct. 2003.
[4] J. N. Laneman, D. N. C. Tse, and G.W.Wornell, “Cooperative diversity in wireless
networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol.
50, no. 12, pp. 3062–3080, Dec. 2004.
[5] Z. Li and X.-G. Xia, “A simple Alamouti space-time transmission scheme for
asynchronous cooperative systems,” IEEE Signal Proces. Lett., vol. 14, no. 11, pp.
804–807, Nov. 2007.
[6] H. Wang, X.-G. Xia, and Q. Yin, “Distributed space-frequency codes for
cooperative communication systems with multiple carrier frequency offsets,” IEEE
Trans. Commun., vol. 8, no. 2, pp. 1045–1055, Feb. 2009.
[7] R. R. Mosier and R. G. Clabaugh, “Kineplex, a bandwidth-efficient binary
transmission system,” AIEE Trans., vol. 76, pp. 723–728, Jan. 1958.
[8] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data
rate wireless communication performance criterion and code construction,” IEEE
Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
[9] IEEE Part11:Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std
802.11a-1999, Sep. 1999.
[10] U. Ladebusch and C. A. Liss, “Terrestrial DVB (DVB-T): A broadcast technology
for stationary portable and mobile use,” Proceeding of the IEEE, vol. 94, no. 1, pp.
183–193, Jan. 2006.
[11] A. Al-Dweik, A. Hazmi, S. Younis, B. Sharif, and C. Tsimenidis, “Carrier
frequency offset estimation for OFDM systems over mobile radio channels,” IEEE
Trans. Veh. Technol., vol. 59, no. 2, pp. 974–979, Feb. 2010.
[12] B. W. Zarikoff and J. K. Cavers, “Multiple frequency offset estimation for the
downlink of coordinated MIMO systems,” IEEE J. Sel. Areas Commun., vol. 26,
no. 6, pp. 901–912, Aug. 2008.
[13] D. Veronesi and D. L. Goeckel, “Multiple frequency offset compensation in
cooperative wireless systems,” in Proc. IEEE Globecom’06, San Francisco, USA,
Nov. 2006.
[14] Z. Li, D. Qu, and G. Zhu, “An equalization technique for distributed STBC-OFDM
system with multiple carrier frequency offsets,” in Proc. IEEE WCNC’06, Apr.
2006, vol. 2, pp. 839–843.
[15] Y. J. Kim, H. Lee, H. K. Chung, and Y. S. Cho, “An iterative decoding technique
for cooperative STBC-OFDM systems with multiple carrier frequency offsets,” in
Proc. IEEE 18th Int. Symp. PIMRC’07, Sep. 3-7, 2007.
[16] Seyedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM
systems,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 198–210, Jan. 2005.
[17] O. Real and V. Almenar, “OFDM ICI self-cancellation scheme based on five
weights,” in Proc. IEEE Wireless and Mobile Computing Networking and
Communications, 2008, pp. 360–364.
[18] Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for
OFDM mobile communication systems,” IEEE Trans. Commun., vol. 49, no. 7, pp.
1185–1191, Jul. 2001.
[19] D. N. Dao and C. Tellambura, “Intercarrier interference self-cancellation spacefrequency
codes for MIMO-OFDM,” IEEE Trans. Veh. Technol., vol. 54, no. 5,
pp. 1729–1738, Sep. 2005.
[20] H. G. Yeh and C. C. Wang, “New parallel algorithm for mitigating the frequency
offset of OFDM systems,” in Proc. IEEE 60th VTC-2004 Fall, Sep. 2004, pp.
2087–2091.
[21] H.-G. Yeh, Y.-K. Chang, and B. Hassibi, “A scheme for cancelling intercarrier
interference using conjugate transmission in multicarrier communication systems,”
IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 3–7, Jan. 2007.
[22] K. Sathananthan, C. R. N. Athaudage, and B. Qiu, “A novel ICI cancellation
scheme to reduce both frequency offset and IQ imbalance effects in OFDM,” in
Proc. Ninth International Symposium on Computers and Communications, Jul.
2004, vol. 2, pp. 708–713.
[23] Z. Li and X.-G. Xia, “An Alamouti coded OFDM transmission for cooperative
systems robust to both timing errors and frequency offsets,” IEEE Trans. Wireless
Commun., vol. 7, no. 5, pp. 1839–1844, May 2008.
[24] Q. Shi, Y. Fang, and M. Wang, “A novel ICI self-cancellation scheme for OFDM
systems,” The 5th International Conference on Wireless Communications
Networking and Mobile Computing, 2009.
[25] C.-L. Wang and Y.-C. Huang, “Intercarrier interference cancellation using general
phase rotated conjugate transmission OFDM systems,” IEEE Trans. Commun., vol.
58, no. 3, pp. 1185–1191, Jul. 2001.
[26] H. Yang, G. Li, L. Cai, and L. Gui, “An adaptive ICI self cancellation scheme to
compensate the frequency offset for OFDM system,” in Proc. IEEE 57th
VTC-2003 Spring, Apr. 2003, pp. 2658–2662.
[27] Y.-H. Peng, Y.-C. Kuo, G.-R. Lee, and J.-H. Wen, “Performance analysis of a new
ICI self-cancellation scheme in OFDM systems,” IEEE Trans. Consum.
Electron., vol. 53, pp. 1333–1338, Nov. 2007.
[28] J. Armstrong, “Analysis of new and existing methods of reducing intercarrier
interference due to carrier frequency offset in OFDM,” IEEE Trans. Commun., vol.
47, no. 3, pp. 365–369, Mar. 1999.
[29] S. Tang, K. Gong, C. Pan, C. Pan, and Z. Yang, “Self-cancellation of intercarrier
interference in OFDM systems with phase noise,” in Proc. IEEE PIMRC’06, Sep.
2006.
[30] K. Deng, Y. Tang, S. Shao, and K. Sun, “Correction of carrier frequency offsets in
OFDM-based spatial multiplexing MIMO with distributed transmit antennas,”
IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 2072–2077, May 2009.
[31] P. H. Moose, “A technique for orthogonal frequency division multiplexing
frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp.
2908–2914, Oct. 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.62.45
論文開放下載的時間是 校外不公開

Your IP address is 18.116.62.45
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code