Responsive image
博碩士論文 etd-0825110-214424 詳細資訊
Title page for etd-0825110-214424
論文名稱
Title
奈米級零價鐵懸浮液注入結合電動力法產生類-Fenton反應整治模擬地下環境中As(III)之研究
Fenton-like Reaction of As(III) in a Simulated Subsurface Environment via Injection of Nanoiron Slurry Combined with the Electrokinetic Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
161
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-21
繳交日期
Date of Submission
2010-08-25
關鍵字
Keywords
奈米級零價鐵、類-Fenton法、電動力法
Fenton-like reaction, Nanoiron slurry, Electrokinetic, Arsenite As(III), Arsenate As(V), As(V), As(III)
統計
Statistics
本論文已被瀏覽 5681 次,被下載 1109
The thesis/dissertation has been browsed 5681 times, has been downloaded 1109 times.
中文摘要
摘要

本研究探討自行合成之奈米級零價鐵懸浮液使其形成類-Fenton法,並針對去離子水及含腐植酸的模擬地下水進行As(III)氧化為As(V)之反應進行討論,更進一步藉由奈米級零價鐵懸浮液的注入結合電動力法產生類-Fenton作用氧化土壤中As(III)。
在奈米級零價鐵製備方面,發現利用獨具網狀空間的結構的特性,使其形成空間位阻的概念,在添加3 wt%可溶性澱粉情況下,成功地達到分散效果,後續以XRD、FE-SEM、ESEM-EDS及EDS-Mapping觀察其物種及型態分佈,上述儀器觀察結果發現,本研究所合成之奈米級零價鐵係屬非結晶型態之鐵物種。
在水體試驗中,比較去離子水與含腐植酸之模擬地下水在未增加溶氧且注入奈米級零價鐵懸浮液的情況下As(III)氧化為As(V)之效果,發現在未增加溶氧情況下,模擬地下水的試驗組別中奈米級零價鐵產生之OH•屬非選擇性氧化劑,因此降低了As(V)的產率。而在增加溶氧的情況下,水中溶氧可以幫助氧化模擬地下水中的有機物,使得OH•能進一步氧化As(III),以致於在增加溶氧的模擬地下水中有較多的As(V)生成率。最後以未增加溶氧時,利用模擬地下水試驗組別之最佳參數條件下,以實際地下水進行試驗,由試驗結果得知As(V)產量約為17.18 μg/L,而在模擬地下水之As(V)產量約為4.63 μg/L。
本研究進一步利用奈米級零價鐵懸浮液注入結合電動力技術進行整治土壤管柱中含低濃度(初始濃度為100 mg/kg)及高濃度(初始濃度為500 mg/kg)之As(III),在低濃度試驗組別中僅施加電動力法的組別Test E-1,試驗終了後土體As(V)殘餘濃度為24 mg/kg,而在Test E-2(奈米級零價鐵懸浮液注入陽極槽)及Test E-3(奈米級零價鐵懸浮液注入陰極槽)土體As(V)殘餘濃度分別為2.3 mg/kg和3.4 mg/kg。在高濃度試驗組別中Test E-4(僅施加電動力法)、Test E-5(奈米級零價鐵懸浮液注入陽極槽)及Test E-6(奈米級零價鐵懸浮液注入陰極槽)僅在正規化土壤區段(Normalized Distance from Anode Reservoir)為0.2及0.4處符合土壤污染管制標準,在其餘正規化土壤區段為0.6、0.8及1.0處則高出法規標準許多。而在正規化土壤區段為1.0處,Test E-6土壤之As(V)殘餘濃度低於Test E-5,約116.6 mg/kg,原因可能為Test E-6為陰極槽注入奈米級零價鐵在高pH值環境下不發生鐵腐蝕作用進而轉換為吸附作用為主,導致帶負電之As(V)物種只有濃度約183.5 mg/kg隨離子遷移作用至正規化土壤區塊1.0處。
Abstract
Abstract

The object of this study was to investigate the synthesis of a nanoscale zero-valent iron slurry (NZVIS) for use in Fenton-like reactions, and to evaluate its efficiency for As(III) oxidation to As(V) in spiked deionized water and simulated groundwater containing humic acid. Furthermore, this study used injection of the nanoiron slurry combined with electrokinetic processes to remediate As(III) in soil.
NZVI was prepared by a chemical reduction process. The efficiency of using 3 wt% soluble starch (SS) to stabilize NZVI was also studied. It was found that the SS could keep the nanoparticles dispersed for over one day. The NZVI was characterized by XRD, FE-SEM, ESEM-EDS, and EDS-mapping, to observe its morphology and crystal structure. In this research the iron species observed took non-crystalline forms.
In water batch tests, studies in deionized water were compared with those in simulated groundwater with humic acid, and dissolved oxygen content was adjusted. Injection of NZVIS oxidized As(III) to As(V) in all cases. In both deionized water and simulated groundwater, it was found that when the dissolved oxygen(DO) content was not increased, the NZVIS generated non-selective oxidant OH•, thus reducing the As(V) production rate. When dissolved oxygen content was increased, the DO oxidized organic matter present in the simulated groundwater, allowing the OH• to react further with As(III) and increasing the As(V) production rate. Finally, a test was performed in actual groundwater under optimal reaction conditions, without increasing the dissolved oxygen content, for comparison of As(V) yield. The concentration of As(V) was found to be higher in this test (As(V) Conc. = 17.55 μg/L) than when using simulated groundwater (As(V) Conc. = 4.63 μg/L).
This study further examined NZVIS injection combined with electrokinetic (EK) technology for the remediation of soil columns containing a low concentration (initial conc. = 100 mg/kg) and a high concentration (initial conc. = 500 mg/kg) of As(III). EK alone without injection of NZVIS (Test E-1) resulted in a residual soil As(V) concentration of 24 mg/kg in the low-concentration test group. In Test E-2, where NZVIS was injected into the anode reservoir, and Test E-3, where NZVIS was injected into the cathode reservoir, residual soil As(V) concentrations were 2.3 mg/kg and 3.4 mg/kg, respectively.
The high-concentration test group was comprised of Test E-4 (EK alone without injection of NZVIS), Test E-5 (NZVIS injected into anode reservoir), and Test E-6 (NZVIS injected into cathode reservoir). In these tests, only soil sections 0.2 and 0.4 (normalized distance from anode reservoir) met soil regulation standards. Residual As(V) concentrations in soil sections 0.6, 0.8, and 1.0 are much higher than the regulatory standard. In soil section 1.0, the residual As(V) concentration was less in Test E-6 than in Test E-5 (116.6 mg/kg and 183.5 mg/kg, respectively). This may be because at high pH values, the iron surface does not corrode, instead arsenic adsorption prevails. Only a fraction of negatively charged As(V) species will migrate towards the anode resulting in a relatively low soil As(V) concentration near the cathode.
目次 Table of Contents
目錄

聲明切結書 i
謝誌 ii
摘要 iii
Abstract v
圖目錄 x
表目錄 xiv
照片目錄 xv
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
1-3 研究架構與內容 4
第二章 文獻回顧 6
2-1 重金屬砷 6
2-1-1 砷物種於自然界中分布及其物化特性 6
2-1-2 砷對人體健康危害特性 8
2-1-3 世界上高濃度砷之分佈及管制標準 9
2-2 Fenton法及類-Fenton法相關理論介紹 14
2-1-1 Fenton法之相關理論 14
2-1-2 類-Fenton法之相關理論 16
2-1-3 影響類-Fenton法之相關因子 17
2-3 奈米級零價鐵之發展與污染物的反應機制 20
2-3-1 氧化或還原反應機制原理 20
2-3-2 吸附反應機制 25
2-4 電動力整治技術 27
2-4-1 電動力技術之基本反應原理 27
2-4-2 影響電動力法處理孔隙間污染物的相關因子 31
2-4-3 利用電動力技術整治土壤污染相關之研究 34
第三章 實驗材料與方法 36
3-1 研究材料與試劑 36
3-2 研究設備 38
3-3 研究方法 41
3-3-1 奈米級零價鐵的製備與基本特性分析 41
3-3-1-1 可溶性澱粉添加奈米級零價鐵於水溶液中穩定探討 42
3-3-1-2 奈米級零價鐵物種鑑定 44
3-3-1-3 奈米級零價鐵之顆粒形貌及粒徑觀測 45
3-3-1-4 環境掃描式電子顯微鏡X-光能譜分析儀(ESEM-EDS)與元素能量 分佈面描分析(EDS-Mapping)之分布形 45
3-3-2 模擬地下水配製及實際地下水離子濃度檢測 46
3-3-3 奈米級零價鐵於水溶液中氧化As(III) 47
3-3-3-1 高錳酸鉀滴定法(雙氧水檢測法) 48
3-3-3-2 醋酸鹽型態強鹼型陰離子交換樹脂的製備 48
3-3-3-3 水溶液中分離As(III)及As(V)之試驗 49
3-3-3-4 pH值及溶氧量對氧化不同水溶液中As(III)之影響 51
3-3-4 奈米級零價鐵懸浮液結合電動力技術整治飽和土體中As(III)試驗 53
3-3-4-1 As(III)於土體中吸附試驗 56
3-3-4-2 人工污染土樣製備及土壤管柱的填充 57
3-3-4-3 每日反應過程分析 57
3-3-4-4 試驗前後之土壤分析 58
第四章 結果與討論 64
4-1 奈米級零價鐵基本特性分析 64
4-1-1 X-光繞射(X-Ray Diffraction, XRD)物種成分分析 64
4-1-2 場發射型掃瞄式電子顯微鏡FE-SEM (Field Emission Scanning Electron Microscope) 66
4-1-3 環境掃描式電子顯微鏡-X-光能譜分析儀(ESEM-EDS)與能量分佈面描分析(EDS-Mapping) 67
4-2 奈米鐵懸浮液之穩定性探討 69
4-3 利用高錳酸鉀檢測水溶液中過氧化氫 74
4-4 As(III)及As(V)之分離 75
4-5 去離子水、模擬地下水及實際地下水中改變pH值對As(III)氧化成 As(V)的影響 77
4-6 去離子水和模擬地下水中改變溶氧對As(III)氧化成As(V)的影響 83
4-7 土壤樣品基本特性分析 87
4-8 去離子水中改變奈米級零價鐵劑量對As(III)氧化成As(V)的影響 88
4-9 泥漿試驗 91
4-10 奈米級零價鐵懸浮液注入結合電動力整治技術處理土壤中As(III) 試驗 93
4-11 奈米級零價鐵結合電動力技術經濟效益評估 113
4-12 高濃度As(III)試驗組別之長期整治試驗 116
第五章 結論與建議 124
5-1 結論 124
5-2 建議 127
參考文獻 128
附錄 142
參考文獻 References
參考文獻

英文部分:
Acar, Y. B. and A. N. Alshawabkeh, “Principals of Electrokinetic Remediation,” Enviromental Science and Technology, Vol. 27, No. 4, pp. 2638-2647 (1993).
Ando, Y. and T. Tanaka, “Proposal for a New System for Simultaneous Production of Hydrogen and Hydrogen Peroxide by Water Electrolysis,” International Journal of Hydrogen Energy, Vol. 29, pp. 1349-1354 (2004).
ASTM, “Standard Test Mehod for Specific Gravity of Soil,” ASTM D854-83 (1983).
Baek, K., D. H. Kim, S. W. Park, B. G. Ryu, T. Bajargal, and J. S. Yang, “Electrolyte Conditioning-Enhanced Electrokinetic Remediation of Arsenic-Contaminated Mine Tailing,” Journal of Hazardous Materials, Vol. 161, pp. 457-462 (2009).
Bang, S., M. D. Johnson, G. P. Korfiatis, and X. Meng, “Chemical Reactions between Arsenic and Zero-Valent Iron in Water,” Water Research, Vol. 39, pp. 763-770 (2005).
Cundy, A. B. and L. Hopkinson, “Electrokinetic Iron Pan Generation in Unconsolidated Sediments: Implications for Contaminated Land Remediation and Soil Engineering,” Applied Geochemistry, Vol. 20, pp. 841-840 (2005).
Cutter, G. A., “Kinetic Controls on Metalloid Speciation in Sea Water,” Marine Chemistry, Vol. 40, pp. 65-80 (1992).
Choong, T. S. Y., T. G. Chuah, Y. Robiah, F. L. G. Koay, and I. Azni, “Arsenic Toxicity, Health Hazards and Removal Techniques from Water: an Overview,” Desalination, Vol. 217, pp. 139-166 (2007).
Deng, Y., “Physical and Oxidative Removal of Organics During Fenton Treatment of Mature Municipal Landfill Leachate,” Journal of Hazardous Materials, Vol. 146, pp. 334-340 (2007).
Dogruel, S., T. Olmez-Hanci, Z. Kartal, I. Arslan-Alaton, and D. Orhon, “Effect of Fenton’s oxidation on the particle size distribution of organic carbon in olive mill wastewater,” Water Research, Vol. 43, pp. 3974-3983 (2009).
Doong, R. A. and S. C. Wu, “Reductive Dechlorination of Chlorinated Hydrocarbons in Aqueous Solutions Containing Ferrous and Sulfide Ions,” Chemosphere, Vol. 24, No. 8, pp. 1063-1075 (1992).
Elizalde-González, M. P., J. Mattusch, W. D. Einicke, and R. Wennrich, “Sorption on Natural Solids for Arsenic Removal,” Chemical Engineering Journal, Vol. 81, pp. 187-195 (2001).
Elliott, D. W. and W. X. Zhang, “Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment,” Environmental Science and Technology, Vol. 35, No. 24, pp. 4922-4926 (2001)
Fan, H. J., S. T. Huang, W. H. Chung, J. L. Jan, W. Y. Linc, and C. C. Chen, “Degradation Pathways of Crystal Violet by Fenton and Fenton-like Systems: Condition Optimization and Intermediate Separation and Identification,” Journal of Hazardous Materials, Vol. 171, pp. 1032-1044 (2009).
Feitz, A. J., S. H. Joo, J. Guan, Q. Sun, D. L. Sedlak, and T. D. Wait, “Oxidative Transformation of Contaminants Using Colloidal Zero-Valent Iron,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 265, pp. 88-94 (2005).
Fenton, H. J. H., “Oxidation of Tartaric Acid in Presence of Iron,” Journal of Chemical Society, Vol. 65, No. 5, pp. 899-910 (1894).
Ferguson, J. F. and J. Garvis, “A Review of the Arsenic Cycle in Natural Waters,” Water Research, Vol. 6, pp. 1259-1274 (1972).
Ghimire, K. N., K. Inouea, H. Yamaguchia, K. Makino, and T. Miyajima, “Adsorptive Separation of Arsenate and Arsenite Anions from Aqueous Medium Byusing Orange Waste,” Water Research, Vol. 37, pp. 4945-4953 (2003).
Geng, B., Z. Jin, T. Li, and X. Qi, “Preparation of Chitosan-Stabilized Fe0 Nanoparticles for Removal of Hexavalent Chromium in Water,” Science of the Total Environment, Vol. 407, pp. 4994-5000 (2009).
Gómez-Ariza, J. L., D. Sánchez-Rodas, and I. Giráldez, “Selective Extraction of Iron Oxide Associated Arsenic Species from Sediments for Speciation with Coupled HPLC-HG-AAS,” Journal of Analytical Atomic Spectrometry, Vol. 13, pp. 1375-1379 (1998).
Huang, C. P., C. D. Dong, and Z. M. Tang, “Advanced Chemical Oxidation: It’s Present Role and Potential Future in Hazardous Waste Treatment,” Waste Management, Vol. 13, pp. 361-377 (1995).
Jain, C. K. and I. Ali, “Arsenic: Occurrence, Toxicity and Speciation Techniques,” Water Research, Vol. 34, No. 17, pp. 4304-4312 (2000).
Joo, S. H., A. J. Feitz, and T. D. Waite, “Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron,” Environment Science and Technology, Vol. 38, pp. 2242-2247 (2004).
Kanel, R. S., B. Manning, L. Charlet, and H. Choi, “Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron,” Environmental Science and Technology, Vol. 39, pp. 1291-1298 (2005).
Kang, S. F., T. H. Wang, and Y. H. Lin, “Decolorization and Degradation of 2,4-Dinitrophenol by Fenton’s Reagent,” Journal of Environmental Science and Health. Part A, Environmental Science and Engineering and Toxic & Hazardous Substance Control, Vol. 34, pp. 935-950 (1999).
Kakarla, K. C. and R. J. Watts, “Depth of Fenton-Like Oxidation in Remediation of Surface Soil,” Journal of Environmental Engineering Vol. 123, No. 1, pp. 11-17 (1997).
Katsoyiannis, I. A., H. W. Althoff, H. Bartel, and M. Jekel, “The Effect of Groundwater Composition on Uranium(VI) Sorption onto Bacteriogenic Iron Oxides,” Water Research, Vol. 40, pp. 3646-3652 (2006).
Kesavan, S. K. and A. M. Azad, “Conversion of Steel Mill Waste into Nanoscale Zerovalent Iron (nZVI) Particles for Hydrogen Generation via Metal-Steam Reforming,” International Journal of Hydrogen Energy, Vol. 33, pp. 1232-1242 (2008).
Kim, J. M., “Separation of Inorganic Arsenic Species in Groundwater Using Ion Exchange Method,” Bulletin of Environmental Contamination and Toxicology, Vol. 67, pp. 46-51 (2001).
Li, F., C. V. and K. K. Mohanty, “Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 223, pp.103-112 (2003).
Lien, H. and W. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 191, pp. 97-105 (2001).
Lindsey, M. E. and M. A. Tarr, “Quantitation of Hydroxyl Radical During Fenton Oxidation Following a Single Addition Iron and Preoxide,” Chemosphere, Vol. 41, pp. 409-417 (2000).
Liu, C. W., S. W. Wang, C. S. Jang, and K. H. Lin,“Occurrence of Arsenic in Ground Water in the Choushui River Alluvial Fan,”Journal of Environmental Quality, Vol. 35, pp. 68-75 (2006).
Lu, M. C., J. N. Chen, and C. P. Chang, “Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide with Fenton’s Reagent,” Chemosphere, Vol. 35, No. 10, pp. 2285-2293 (1997).
Lu, M. C., Y. F. Chang, I. M. Chen, and Y. Y. Huang, “Effect of Chloride Ions on the Oxidation of Aniline by Fenton’s Reagent,” Journal of Environmental Mannangements, Vol. 75, pp. 177-182 (2005).
Ma, J. H., W. J. Song, C. C. Chen, W. H. Ma, J. C. Zhao, and Y. L. Tang, “Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation,” Environmental Science and Technology, Vol. 39, pp. 5810-5815 (2005).
Manning, B. A., M. Hunt, C. Amrhein, and J. A. Yarmoff, “Arsenic(III) and Arsenic(V) Reactions with Zero Valent Iron Corrosion Products,” Environmental Science and Technology, Vol. 36, pp. 5455-5461 (2002).
Matheson, L. J. and P. G. Trantnyek, “Reductive Dehalogenatlon of Chlorinated Methanes by Iron Metal,” Environmental Science and Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
Mazumder, G. D. N., “Chronic Arsenic Toxicity: Clinical Features, Epidemiology, and Treatment: Experience in West Bengal,” Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, Vol. 38, pp. 141-163 (2003).
Oloman, C. and A. P. Watkinson, “Hydrogen Peroxide Production in rickle-Bed Electrochemical Reactors,” Journal of Electrochmical Society, Vol. 9 No.1, pp. 117-128 (1979).
Ponder, S. M., J. C. Darab, and T. E. Mallouk, “Remediation of Cr (VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero Valent Iron,” Environmental Science and Technology, Vol. 34, pp. 2564-2569 (2000).
Rahner, D., G. Ludwig, and J. Röhrs, “Electrochemically Induced Reactions in Soils- A New Approach to the In-situ Remediation of Contaminated Soils? Part 1: The Microconductor Principle,” Electrochimica Acta, Vol. 47, pp. 1395-1043 (2002).
Rajic, L. M., B. D. Dalmacija, J. S. Trickovic, M. B. Dalmacija, and D. M. Krcmar, “Behavior of Zinc, Nickel, Copper and Cadmium During the Electrokinetic Remediation of Sediment from the Great Backa Canal (Serbia),” Journal of Environmental Science and Health, Part A, Vol. 45, pp. 1134-1143 (2010).
Ravikumar, J. X. and M. D. Gurol, “Chemical Oxidation of Chlorinated Orgnaics by Hydrogen Peroxide in the Presence of Sand,” Environmental Science and Technology, Vol. 28, No. 3, pp. 394-400 (1994).
Romero-Schmidt, H., A. Naranjo-Pulido, L. Méndez-Rodríguez, B. Acosta-Vargas, and A. Ortega-Rubio, “Environmental Health Risks by Arsenic Consumption in Water Wells in the Cape Region, Mexico,” in C. A. Brebbia and D. Fajzieva, eds., Wessex Institute of Technology Press, pp. 131–138, South-hampton, UK (2001).
Rutherford, D. W. and C. T. Chiou, “Effect of Water Saturation in Soil Organic Matter on the Partition of Organic Componds,” Environmental Science and Technology, Vol. 26, pp. 964-970 (1992).
Saichek, R. E. and K. R. Reddy, “Electrokinetically Enhanced Remediation of Hydrophobic Organic Compounds in Soils: a Review,” Critical Reviews in Environmental Science and Technology, Vol. 35, pp. 115-192 (2005)
Sasaki, K., H. Nakano, W. Wilopo, Y. Miura and T. Hirajima, “Sorption and Speciation of Arsenic by Zero-Valent Iron,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Vol. 347, pp. 8-17 (2009).
Siedlecka, E. M., A. Wieckowska, and P. Stepnowski, “Influence of Inorganic Ions on MTBE Degradation by Fenton’s Reagent,” Journal of Hazardous Materials, Vol. 147, pp. 497-502 (2007).
Sun, Y. P., X. Q. Li, J. Cao, W. X. Zhang, and H. P. Wang, “Characterization of Zero-Valent Iron Nanoparticles,” Advances in Journal of Colloid and Interface Science, Vol. 120, pp. 47-56 (2006).
Smedley, P. L. and D. G. Kinniburgh, “A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters,” Applied Geochemistry, Vol. 17, pp. 517-568 (2002).
Tsai, S. L., S. Singh, and W. Chen, “Arsenic Metabolism by Microbes in Nature and the Impact on Arsenic Remediation,” Current Opinion in Biotechnology, Vol. 20, pp. 659-667 (2009).
Vane, M. L. and G. M. Zang, “Effect of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-Osmotic Permeability: Implications for Electro-Kinetic Soil Remediation Processes,” Journal of Hzardous Materials, Vol 55, No. 3, pp. 1-22 (1997).
Vázquez, M. V., F. Hernánded-Luis, D. Benjumea, D. Grandoso, M. Lemus, and C. D. Arbelo, “Electrokinetic Determination of the Buffer Capacity of Andisols,” Science of the Total Environment, Vol. 378, pp. 214-217 (2007).
Virkutyte, J., M. Sillanpää, P. Latostenmaa, “Electrokinetic Soil Remediation-Critical Overview,” The Science of the Total Environment, Vol. 289, pp. 97-121 (2002).
Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformations of Halogenated Aliphatic Compounds,” Environmental Science and Technology, Vol. 21, No. 8, pp. 722-736 (1987).
Watts, R. J. and S. E. Dilly, “Evaluation of Iron Catalysts for the Fenton-like Remediation of Diesel-Contaminated Soils,” Journal of Hazardous Materials, Vol. 51, pp. 209-224 (1996).
Watts, R. J., M. K. Foget, S. H. Kong, and A. L. Teel, “Hydrogen Peroxide Decomposition in Model Subsurface System,” Journal of Hazardous Materials, Vol. B69, pp. 229-243 (1999).
Watts, R. J., D. R. Haller, A. P. Jones, and A. L. Teel, “A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton’s Reactions,” Journal of Hazardous Materials, Vol. B76, pp. 73-89 (2000).
World Health Organisation, “Guidelines for Drinking Water Quality,” (1993).
Yang, G. C. C. and C. Y. Liu, “Remediation of TCE Contaminated Soils by in situ EK-Fenton Process,” Journal of Hazardous Materials Vol. B85, pp. 317-331 (2001).
Yang, G. C. C., H. C. Tu, and C. H. Hung, “Stability of Nanoiron Slurries and Their Transport in the Subsurface Environment,” Separation and Purification Technology, Vol. 58, pp. 166-172 (2007).
Yeager, E., “Electrocatalysts for O2 Reduction,” Electrochimica Acta, Vol. 29, No. 11, pp. 1527-1534, 1984.
Yuan, C. and T. S. Chiang, “The Mechanisms of Arsenic Removal from Soil by Electrokinetic Process Coupled with Iron Permeable Reaction Barrier,” Chemosphere, Vol. 67, pp. 1533-1542 (2007).
Zhang, W. X., “Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, Vol. 5, pp. 323-332 (2003).
Zhu, H., Y. Jia, X. Wu, and H. Wang, “Removal of arsenic from water by supported nano zero-valent iron on activated carbon,” Journal of Hazardous Materials, Vol. 172, pp. 1591-1596 (2009).

中文部分:
王智龍,“觀湖大樓深層地下水水質調查”,高雄縣鳥松鄉 (2009)。
台灣地區土壤污染現況與整治政策分析,http://old.npf.org.tw/PUBLICATION/SD/091/SD-B-091-021.htm (2010)。
台灣電力公司,「電費試算表」http://www.cogen.org.tw/doc%5Cnew%20service%5C4-17%E5%8F%B0%E7%81%A3%E9%9B%BB%E5%8A%9B%E5%85%AC%E5%8F%B8%E9%9B%BB%E5%83%B9%E8%A1%A8%E8%AA%AA%E6%98%8E%E6%9B%B8.htm (2010)。
行政院環境保護署,「土壤及地下水污染整治法」,2000年2月2日發布,2010年2月4日修正發佈 (2010)。
行政院勞工委員會,「物質安全資料表」,http://www.cla.gov.tw/cgi-bin/SM_theme?page=41d35566 (2010)。
行政院環境保護署,「飲用水水質標準」,1998年2月4日發布,2009年11月26日修正發佈 (2009a)。
行政院環境保護署,「土壤污染管制標準」,2001年11月21日發布,2008年5月1日修正發佈 (2008)。
行政院環境保護署,「地下水污染管制標準」,2001年11月21日發布,2009年1月15日修正發佈 (2009b)。
行政院環境保護署環檢所,「土壤水分含量測定方法-重量法」,NIEA S280. 60T (1995a)。
行政院環境保護署環檢所,「土壤中酸鹼值測定方法」,NIEA S410. 60T (1995b)。
吳惠銘,「電動法處理鉛、鉻、鎘污染土壤之研究」,碩士學位論文,國立雲林科技大學環境境與安全工程技術研究所,雲林縣 (1998)。
吳明諺,「奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
奈米國家型科技計,http://nano-taiwan.sinica.edu.tw/index.php?lid=11 (2002)。
奈米科技源起,http://tainano.com/chin/plenty%20room.htm#2 (2010)。
林獻山、張添晉,「土壤污染與整治復育」,高立圖書有限公司,台北縣 (2006)。
林晉卿、楊秋忠、林宏鋕、黃山內,「三種綠肥在浸水土壤可溶性有機碳的變化」,台南區研究改良場農業彙報,第47期,第17-30頁 (2006)。
施周、張文輝,「環境奈米技術」,五南圖書出版社,台北市 (2006)。
施明智,「食物學原理」,第六章,穀類與澱粉,第147-158頁 (1996)。
洪志雄,「奈米複合金屬製備及其對土壤/地下水污染整治應用之研究」,博士學位論文,國立中山大學環境工程研究所,高雄市 (2007)。
染化資訊網,http://www.dfmg.com.tw/dasp/dfaux/o09-a.htm (2010)。
涂秀娟,「奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌茖數之影響」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2007)。
張德光,「結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2005)。
張立德、牟季美,「奈米材料和奈米結構」,滄海書局,台北市 (2000)。
曾國輝,「化學」,第十章,氧化與還原,第632頁 (1992)。
經濟部工業局,「工廠土壤與地下水污染整治技術手冊」,第四章,第102頁,台北市 (2003)。
經濟部水利署地下水觀測網http://eem.pcc.gov.tw/eem/node/508 (2010)。
廖軒斐,「零價鐵反應牆外加電壓去除水中三氯乙烯之研究」,碩士學位論文,國立中央大學環境工程研究所,中壢市 (2002)。
劉奇岳,「電動力-Fenton法現地處理受三氯乙烯及4氯酚污染土之最佳操作條件探討」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (1999)。
劉振宇、王聖瑋、林光亮,「台灣地區濁水溪沖積扇南翼之地下水砷污染可能來源與成因」,台灣土壤及地下水環境保護協會簡訊,第21期,第15-19頁 (2007)。
羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,「奈米科技導論」,全華科技圖書股份有限公司,第一章,總綸,第1-2頁 (2003)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code