Responsive image
博碩士論文 etd-0825111-005210 詳細資訊
Title page for etd-0825111-005210
論文名稱
Title
黑皮海綿生物學與珊瑚黑病爆發機制: 太平洋黑皮海綿遺傳連通性與擴散機制研究
Outbreak mechanisms of Black disease: genetic connectivity and dispersal mechanisms of Terpios hoshinota.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-08-25
關鍵字
Keywords
遺傳連通性、星野黑皮海綿、珊瑚疾病、海綿、擴散模式
dispersal, genetic connectivity, coral disease, sponge, Terpios hoshinota
統計
Statistics
本論文已被瀏覽 5728 次,被下載 769
The thesis/dissertation has been browsed 5728 times, has been downloaded 769 times.
中文摘要
星野黑皮海綿(Terpios hoshinota)是一種與行光合作用的藍綠菌共生的平鋪狀海綿(Rutzler and Muzik 1993)。此種海綿會覆蓋石珊瑚,造成珊瑚的死亡。台灣於2006年珊瑚礁總體檢報告中,發現綠島的石珊瑚疑似受到黑皮海綿的感染,而2008-2010在蘭嶼與綠島的野外調查顯示,黑皮海綿在綠島及蘭嶼的淺海域有大量繁生的現象。黑皮海綿群體可能擴散的方式,可分為自行播種(Self-Seeding) 及遠方擴散(Long-range dispersal)兩假說。本研究使用核糖核苷酸 與粒線體核苷酸序列做為分子標記,探討黑皮海綿在台灣周邊海域與日本琉球群島和中國西沙島族群的擴散之方式是屬於自行播種或是遠方擴散。我們於2008年至2009年間採集了台灣墾丁萬里桐、 綠島、蘭嶼 ,日本之宮古島 (Miyako)、今歸仁 (Nakijin)、可米島 (Arahama Kumejima)、沖繩 (Bise Okinawajima)、石垣 (Shiraho Ishigakijima) 、沖永良部島(Yakomo Okinoerabu) 、德之島 (San Tokunoshima)與中國西沙永興島的黑皮海綿,總共110份獨立樣本,使用粒線體核苷酸序列細胞色素C氧化酶(COI)和核糖核苷酸之第二轉錄區間序列(ITS2)變異探討黑皮海綿之族群遺傳結構。

黑皮海綿 COI 序列在台灣綠島和蘭嶼、日本與中國的樣本之中無任何位點的差異,然而台灣萬里桐的黑皮海綿有三個位點上的差異,顯示萬里桐的黑皮海綿可能為不同種。 ITS2分析顯示黑皮海綿之單型多樣性在所有族群之中皆偏高,然而綠島(Green Island)與日本可米島(Arahama Kumejima)內,卻分別僅有單一單型存在。族群分化指數 (Fst) 測試顯示,族群之間有顯著的差異,推測黑皮海綿主要的散播方式以自行播種為主,但伴隨著少數的遠方擴散事件發生於Bise、Shiraho與蘭嶼之間。 分子變方分析顯示黑皮海綿族群之間的差異大於族群內的差異。TCS分析顯示,綠島的單一黑皮海綿單型起源於蘭嶼,而日本Bise地點之黑皮海綿遍佈於日本、台灣等地之族群,綜合核甘酸多樣性、單行多樣性分析與黑皮海綿野外發現之歷史資料,顯示Bise為本研究地點中的黑皮海綿起源。巢式支序分析顯示黑皮海綿族群間之基因交流受到限制,但仍然有某族群呈現鄰近擴張狀態。單型頻率分析則顯示在大部分的黑皮海綿族群之中皆共享一個優勢種類之黑皮海綿單型,該優勢種不僅在當地族群中佔了絕大多數的族群數量,且相對於其他海綿單型來說,該優勢單型可能擁有較佳的散播能力或繁殖能力,使得優勢單型能出現於大多數之黑皮海綿族群之中。

根據結果,星野黑皮海綿並非容易在島嶼之間快速散播的物種,該海綿主要以自行播種的方式在散播,伴隨著偶然發生的遠方擴散事件發生,並減少因距離產生隔離之現象。綠島之黑皮海綿主要是源自於蘭嶼的族群,並且以自行播種的方式在該地繁殖,於數年之內發生族群爆發而大量佔據了綠島,蘭嶼之海綿族群則可能來自於日本地區之Bise、Shiraho與Yakomo,並且也正經歷著族群爆發之現象。日本的黑皮海綿族群之間有明顯的基因差異,並且經歷過奠基者效應與快速的族群增長,而Bise地區則為本研究中黑皮海綿之起源。在黑皮海綿族群之中,並非所有的黑皮海綿都有能力成為該族群的優勢種,在大部分台灣與日本的族群之中,顯示其中某一種單型的黑皮海綿個體有能力成為該族群的優勢種,且該優勢單型不管在族群數量或是族群範圍皆大於其他單型的星野黑皮海綿個體,而該優勢單型也橫跨了台灣、日本的島嶼之間,成為多數地區的優勢單型。
Abstract
The encrusting sponge Terpios hoshinota is a cyanobacteriosponge with symbiotic photosynthetic cyanobacteria. It covers live corals causing their death. Corals at Green Island were suspected to be infected by Terpios hoshinota in 2006, and field investigations indicated there was massive propagation of the species in both Green Island (Lyudao) and Orchid Island (Lanyu) in 2008 to 2010. We propose two hypotheses, either by Self-Seeding or by Long-Range Dispersal, that explain the fast propagation of Terpios hoshinota in the islands offshore of southeastern of Taiwan. We use ribosomal DNA and mitochondria DNA as molecular markers to investigate how the sponge disperses locally and in a greater geographic scale. A total of 110 samples, from Taiwan: Green Island, Orchid Island, and Kenting (Wanlitong). Japan: Okinawa, Nakijin, Miyako, Bise, Shiraho, Arahama Kumeshima, Yakomo (Okinoerabu), San (Takunoshima), and Xisha Island of China, were collected. Internal Transcribed Spacer 2 (ITS2) from ribosomal DNA and cytochrome oxidase I (COI) from mitochondria DNA are used as markers to infer population structure of Terpios hoshinota.

No genetic variation within COI sequence over all sponges from Taiwan to Japan and China was found, although the only sponge sample from Wanlitong in Kenting had three variable sites, which suggest different species of Terpios hoshinota. Based on ITS2 analysis, haplotype diversity (h) is commonly high among most populations, but with different single haplotype found at Green Island and Arahama (Japan). Pairwise population differentiations (FST) are usually high and significant among populations supporting self-seeding, although Bise, Shiraho and Lanyu populations showed no significant differentiation that supports long-range dispersal. Analysis of Molecular Variance (AMOVA) shows no population subdivision; however, genetic differentiations among populations are significantly greater than within populations. TCS analysis indicates that single haplotype in Green Island is originated from Lanyu, and populations in Bise are widely dispersed over other sponge populations in Taiwan and Japan regions. By evidence of TCS analysis with nucleotide diversity, haplotype diversity and field investigation, Bise is the origin of Terpios hoshinota among populations within this study. Frequency of sequence haplotypes indicates one dominant haplotype is shared among most of the sponge populations, and the dominated sponge haplotype takes highest proportions of local populations. The existence of dominant haplotype may result from better dispersal or reproduction ability than other haplotype in populations. Nested clade analysis shows that populations mainly have restricted gene flow with some clade have contiguous range expansion.

We suggest that populations of Terpios hoshinota propagate mainly by self-seeding method with occasional long-range dispersal event that leading to genetic connection among populations and obscuring evidence of isolation by distance in these populations. In Green Island, we consider local populations as undergoing explosion within past several years and propagate by self-seeding method coming from single lineage of Lanyu. Populations in Lanyu may come from Bise, Shiraho, and Yakomo, yet may still in status of population explosion. Populations in Japan may underwent founder effect with rapid population growth, while most populations are rarely interact with each other showing deep genetic differentiation among islands, and Bise is the origin of Terpios hoshinota in this study. Not all of the sponge individuals have ability to dominate local populations, expect for one special haplotype of Terpios hoshinota is capable of dominating local population in both range and quantity, which also has capability of spreading across islands as larger distances than its habitats range in Taiwan and Japan.
目次 Table of Contents
1.Introduction:01-06

2.Materials and Methods:07-15

3.Results:16-21

4.Discussion:22-3

5.Appendix1:31-38

6.Appendix2:39-40

7.References:41-52
參考文獻 References
Abdulkarim, F. & Hughes, D., 1996. Homologous recombination between the tuf genes of Salmonella typhimurium. Journal of molecular biology, 260(4), pp.506–522.
Alvarez, B., Krishnan, M. & Gibb, K., 2007. Analysis of intragenomic variation of the rDNA internal transcribed spacers (ITS) in Halichondrida (Porifera : Demospongiae). Journal Of The Marine Biological Association Of The United Kingdom, 87(6), pp.1599–1605.
Avise, J.C., Neigel, J.E. & Arnold, J., 1984. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution, 20(2), pp.99–105.
Bentlage, B. & Woerheide, G., 2007. Low genetic structuring among Pericharax heteroraphis (Porifera : Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences. Coral Reefs, 26(4), pp.807–816.
Blanquer, A., Uriz, M.J. & Caujape-Castells, J., 2009. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Marine Ecology Progress Series, 380, pp.95–102.
Borchiellini, C. et al., 1998. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of metazoa and specific phylogenetic relationships between animals and fungi. Molecular biology and evolution, 15(6), pp.647–655.
Bryan, P., 1973. Growth rate, toxicity and distribution of the encrusting sponge Terpios sp, Micronesica 9:237-242.
Calderon, I., Garrabou, J. & Aurelle, D., 2006. Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. Journal Of Experimental Marine Biology And Ecology, 336(2), pp.184–197.
Clement, M. & et al, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), pp.1657–1659.
Coleman, A., 2003. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. TRENDS in Genetics, 19(7), pp.370–375.
Debiasse, M.B., Richards, V.P. & Shivji, M.S., 2010. Genetic assessment of connectivity in the common reef sponge, Callyspongia vaginalis (Demospongiae: Haplosclerida) reveals high population structure along the Florida reef tract. Coral Reefs, 29(1), pp.47–55.
Diaz, M. & Rutzler, K., 2001. Sponges: An essential component of Caribbean coral reefs. In Bulletin of Marine Science. Bulletin of Marine Science. pp. 535–546.
Duran, S. & Rutzler, K., 2006. Ecological speciation in a Caribbean marine sponge. Molecular phylogenetics and evolution, 40, pp.292–297.
Duran, S., Pascual, M. & Turon, X., 2004a. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology, 144(1), pp.31–35.
Duran, S., Giribet, G. & Turon, X., 2004b. Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Molecular Ecology, 13(1), pp.109–122.
Duran, S., Giribet, G. & Turon, X., 2004c. Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Molecular Ecology, 13(1), pp.109–122.
Duran, S., Pascual, M., Estoup, A., et al., 2004d. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology, 13(3), pp.511–522.
Erpenbeck, D., Breeuwer, J. & van Soest, R., 2005. Identification, characterization and phylogenetic signal of an elongation factor-1 alpha fragment in demosponges (Metazoa, Porifera, Demospongiae). Zoologica Scripta, 34(4), pp.437–445.
France, S., 2002. DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia, 471, pp.149–155.
Fujii, T. et al., 2011. Coral-killing cyanobacteriosponge (Terpios hoshinota) on the Great Barrier Reef. Coral Reefs, 30(2), pp.483–483.
Grant, W., 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5), pp.415–426.
Grantham, B.A., Eckert, G.L. & Shanks, A.L., 2003. DISPERSAL POTENTIAL OF MARINE INVERTEBRATES IN DIVERSE HABITATS. Ecological Applications, 13(sp1), pp.108–116.
Guindon, S. & Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), pp.696–704.
Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular biology and evolution, 9(3), pp.552–569.
Hellberg, M., 1996. Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution, 50(3), pp.1167–1175.
Hoshino, S., Saito, D.S. & Fujita, T., 2008. Contrasting genetic structure of two Pacific Hymeniacidon species. Hydrobiologia, 603, pp.313–326.
Huang, D. et al., 2008. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution, 66(2), pp.167–174.
Hudson, R. & Slatkin, M., 1992. Estimation of Levels of Gene FlowFrom DNA Sequence Data. Genetics, 132, pp.583–589.
Jensen, J.L., Bohonak, A.J. & Kelley, S.T., 2005. Isolation by distance, web service. BMC genetics, 6, p.13.
John F Elder, J. et al., 1995. Concerted Evolution of Repetitive DNA Sequences in Eukaryotes. The Quarterly Review of Biology, 70(3), pp.297–320.
Kelly, M. et al., 2003. Taxonomic inventory of the sponges (Porifera) of the Mariana Islands. Micronesica, 35(36), pp.100–120.
Kirkendale, L., 2004. Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal‐driven marine system. Molecular Ecology, 13, pp.2749–2762.
Kyle, C. & Boulding, E., 2000. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Marine Biology, 137(5), pp.835–845.
L Excoffier, P.E.S.J.M.Q., 1992. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131(2), p.479.
Laurent, E., Guillaume, L. & Stefan, S., 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, p.47.
Lavrov, D.V., 2005. Mitochondrial Genomes of Two Demosponges Provide Insights into An Early Stage of Animal Evolution. Molecular biology and evolution, 22(5), pp.1231–1239.
Leo, N.P. & Barker, S.C., 2002. Intragenomic variation in ITS2 rDNA in the louse of humans, Pediculus humanus: ITS2 is not a suitable marker for population studies in this species. Insect Molecular Biology, 11(6), pp.651–657.
Librado, P. & Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), pp.1451–1452.
Lin, W., 2009. Distribution and growth of Terpios hoshinota at Green Island and Orchid Island.
Lindquist, N., Bolser, R. & Laing, K., 1997. Timing of larval release by two Caribbean demosponges. MEPS, 155, pp.309–313.
Lord, N.S. et al., 2002. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS microbiology ecology, 42(3), pp.327–337.
Maldonado, M., 2006. The ecology of the sponge larva. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 84(2), pp.175–194.
McFadden, C.S. et al., 2006. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Molecular phylogenetics and evolution, 41(3), pp.513–527.
McFadden, C.S. et al., 2004. Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Marine biotechnology (New York, NY), 6(6), pp.516–526.
Nei, M. & Jin, L., 1989. Variances of the average numbers of nucleotide substitutions within and between populations. Molecular biology and evolution, 6(3), pp.290–300.
Neigel, J., Domingo, A. & Stake, J., 2007. DNA barcoding as a tool for coral reef conservation. Coral Reefs, 26(3), pp.487–499.
Panchal, M., 2006. The automation of Nested Clade Phylogeographic Analysis. Bioinformatics, 23(4), pp.509–510.
Park, M. et al., 2007. Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Molecules and cells, 23(2), p.220.
Plucer-Rosario, G., 1987. The Effect of Substratum on the Growth of Terpios, an Encrusting Sponge Which Kills Corals. Coral Reefs, 5(4), pp.197–200.
Qi, S. et al., 2011. Spatial variations of stony coral cover on the reef slope of Yongxing Island, Xisha Islands. Journal of Tropical Oceanography, 30(2), pp.10–17.
Redmond, N.E. & Mccormack, G.P., 2009. Ribosomal internal transcribed spacer regions are not suitable for intra- or inter-specific phylogeny reconstruction in haplosclerid sponges (Porifera: Demospongiae). Journal Of The Marine Biological Association Of The United Kingdom, 89(6), pp.1251–1256.
Reynolds, J., Weir, B.S. & Cockerham, C.C., 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 105(3), pp.767–779.
Ribeiro, S., Omena, E. & Muricy, G., 2003. Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil. Estuarine, Coastal and Shelf Science, 57(5-6), pp.951–959.
Ronquist, F. & Huelsenbeck, J., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), pp.1572–1574.
Rozas, J., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18), pp.2496–2497.
Rutzler, K., 1993. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Scientia Marina, 57(4), pp.395–403.
Slatkin, M., 1991. Inbreeding coefficients and coalescence times. Genetical research, 58(2), pp.167–175.
Slatkin, M., 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47(1), pp.264–279.
Smith, P.J. et al., 2004. Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean. Marine Biology, 144(2), pp.253–261.
Tang, S.-L. et al., 2011. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge. Environmental microbiology, 13(5), pp.1179–1191.
Templeton, A., Crandall, K. & SING, C., 1992. A CLADISTIC-ANALYSIS OF PHENOTYPIC ASSOCIATIONS WITH HAPLOTYPES INFERRED FROM RESTRICTION ENDONUCLEASE MAPPING AND DNA-SEQUENCE DATA .3. CLADOGRAM ESTIMATION. Genetics, 132(2), pp.619–633.
Teske, P. et al., 2005. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Marine Ecology Progress Series, 286, pp.249–260.
Tseng, C., Wallace, C. & Chen, C., 2005. Mitogenomic analysis of Montipora cactus and Anacropora matthai cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs, 24(3), pp.502–508.
van Oppen, M. & Worheide, G., 2002. Nuclear markers in evolutionary and population genetic studies of scleractinian corals and sponges. Proc 9th Int Coral Reef Symposium, 1, pp.23–27.
Van Oppen, M.J.H., Koolmees, E.M. & Veron, J.E.N., 2004. Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Marine Biology, 144(1), pp.9–18.
Watkins, R. & Beckenbach, A., 1999. Partial sequence of a sponge mitochondrial genome reveals sequence similarity to cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. Journal of Molecular Evolution, 48(5), pp.542–554.
Wei, X.-X., Wang, X.-Q. & Hong, D.-Y., 2003. Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). Journal of Molecular Evolution, 57(6), pp.623–635.
Worheide, G., 2006. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Marine Biology, 148(5), pp.907–912.
Worheide, G. & Hooper, J.N.A., 1999. Calcarea from the Great Barrier Reef. 1: Cryptic Calcinea from Heron Island and Wistari Reef (Capricorn-Bunker Group). MEMOIRS-QUEENSLAND MUSEUM, 43(2), pp.859–891.

Worheide, G., Epp, L.S. & Macis, L., 2008. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evolutionary Biology, 8, p.24.
Worheide, G., Nichols, S.A. & Goldberg, J., 2004a. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Molecular phylogenetics and evolution, 33(3), pp.816–830.
Worheide, G., Nichols, S.A. & Goldberg, J., 2004b. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Molecular phylogenetics and evolution, 33(3), pp.816–830.
Wulff, J., 1991. Asexual Fragmentation, Genotype Success, and Population-Dynamics of Erect Branching Sponges. Journal Of Experimental Marine Biology And Ecology, 149(2), pp.227–247.
Wulff, J., 1985. Dispersal and survival of fragments of coral reef sponges, Proceedings of the Fifth International Coral Reef congress 5:119-124.
Wulff, J., 1995. Effects of a Hurricane on Survival and Orientation of Large Erect Coral-Reef Sponges. Coral Reefs, 14(1), pp.55–61.
Yeung, C. & Lee, T., 2002. Larval transport and retention of the spiny lobster, Panulirus argus, in the coastal zone of the Florida Keys, USA. Fisheries Oceanography, 11(5), pp.286–309.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code