Responsive image
博碩士論文 etd-0825111-020128 詳細資訊
Title page for etd-0825111-020128
論文名稱
Title
XRCC1基因多型性與口腔咽喉癌的形成及預後關係之探討
The Association of XRCC1 Polymorphisms with Development and Prognosis of Oral and Pharyngeal Squamous Cell Carcinomas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-08-25
關鍵字
Keywords
預後、口腔咽喉癌、風險、口腔癌、基因多型性
prognosis, polymorphism, XRCC1, risk, OPSCC, oral cancer
統計
Statistics
本論文已被瀏覽 5662 次,被下載 132
The thesis/dissertation has been browsed 5662 times, has been downloaded 132 times.
中文摘要
X射線修復交叉互補組1(XRCC1)蛋白質在鹼基切除修復中佔有重要的作用。XRCC1基因中的單核苷酸多型性基因可能會影響DNA的修復能力,遺傳易感性和口腔咽喉癌(OPSCC)的預後。這項研究是用來評估XRCC1多型性與形成口腔咽喉癌的風險及預後的相關性。總共收集口腔咽喉癌共509例及678例健康對照組,使用PCR-RFLP方法來檢驗XRCC1的基因型。然後,只將447例,接受手術治療和手術切邊具安全距離者,納入後續的存活分析。XRCC1 194與口腔咽喉癌風險沒有相關性。當結合280Arg/His 及His/His基因型時,相較於280 Arg/Arg基因型,我們發現有邊緣降低口腔咽喉癌風險(校正勝算比為0.73,95%信賴區間為0.54-1.03,p = 0.069),而且顯著的降低口腔癌風險(校正勝算比為0.67,95%信賴區間為0.47-0.99,p = 0.035)。在XRCC1 399中,Gln/Gln基因型相較於Arg/Arg基因型者,不但會增加口腔咽喉癌風險(校正勝算比為2.06,95%信賴區間為1.21-3.51,p = 0.008),也會增加口腔癌風險(校正勝算比為1.89,95%信賴區間為1.08-3.33,p = 0.026)。我們合併了兩個XRCC1 280Arg及399Gln (Arg-Arg-Gln和Trp-Arg-Gln)成為假設”高風險單倍體型”後發現,相較於其他單倍體型,對口腔咽喉癌病人而言,其校正勝算比為1.29(95%信賴區間為1.04-1.60,p = 0.020)。再合併假設高風險之單倍體型為”假設高風險雙倍體型”。與其他雙倍體型比較,對口腔咽喉癌病人而言,其校正勝算比為1.98(95%信賴區間為1.18-3.33,p = 0.010)。帶有XRCC1 280Arg/His及His/His 基因型的者比較容易於晚期(>50歲)時,才得口腔癌外,其他的臨床變項與口腔咽喉癌都不具相關性。在存活分析資料發現,除XRCC1 399外,沒有其他XRCC1 SNPs和病人的存活有關。當病人是399 Arg/Gln及Gln/Gln基因型時,相較於病人是Arg/Arg基因型者,有顯著更好的存活期(校正危險比為0.41,95%信賴區間為0.18-0.93),特別是在那些患者年齡小於50歲(p = 0.012),病理分期屬於Ⅲ或Ⅳ的(p = 0.044),或未接受過術後放射治療者(p = 0.012)。總之,當個體是XRCC1 280 Arg/His或His/His基因型時,會降低罹患口腔癌的風險,個體是XRCC1 399 Gln/Gln基因型時,會增加罹患口腔咽喉癌和口腔癌的風險。高風險的單倍體型(Arg-Arg-Gln與Trp-Arg-Gln)和雙倍體型會增加罹患口腔咽喉癌的風險。然而,399 Arg/Gln和Gln/Gln基因型卻是提高病人存活的預後的因子,特別是對那些年輕的,較具侵襲性腫瘤階段,及沒有接受術後放射治療的口咽和下咽癌病人。這些結果表示,XRCC1基因多型性可能在口腔咽喉癌的發生與預後扮演一定的角色。
Abstract
X-ray repair cross complementing Group 1 (XRCC1) protein plays an important role in base excision repair. Single nucleotide polymorphisms (SNPs) in XRCC1 gene may affect DNA repairing ability, genetic susceptibility, and prognosis to oral and pharyngeal squamous cell cancer (OPSCC). This study was carried out to evaluate the association of three XRCC1 SNPs with the risk and prognosis of OPSCC. A total of 509 OPSCC cases and 678 cancer-free controls were recruited to detect the genotypes of XRCC1 by PCR-RFLP. Then, 447 case patients with surgical treatment and safety margins were included in the survival analysis. No association was observed for XRCC1 194 and the risk of OPSCC. As compared with the wild Arg/Arg genotype, the combined genotypes of 280 Arg/His and His/His were with decreased risk (AOR=0.73, 95% CI, 0.52-1.03, p = 0.069) of OPSCC and with a significantly decreased risk (AOR=0.67, 95% CI, 0.47-0.97, p = 0.035) of oral cavity. As compared with the Arg/Arg genotype of XRCC1 399, the Gln/Gln genotype was with the increased risk of OPSCC (AOR=2.06, 95%CI: 1.21-3.51, p = 0.008) and oral cavity cancer (AOR=1.89, 95%CI: 1.08-3.33, p = 0.026). We defined the “putative high risk haplotypes” as “Arg-Arg-Gln and Trp-Arg-Gln”. The AOR were 1.29 (95% CI, 1.04-1.60, p = 0.020) for the “putative high risk haplotypes” as compared with other haplotypes for OPSCC. Then, two putative high risk haplotypes were combined into “putative high risk diplotypes”. The AOR for the “high risk diplotypes” were 1.98 (95% CI, 1.18-3.33, p = 0.010) as compared with other diplotypes for OPSCC. No association between XRCC1 polymorphisms and clinicopathological outcomes, except XRCC1 280. Those carriers of XRCC1 280His allele (combined Arg/His and His/His genotypes) were associated with late onset (≥50 yrs) of oral cavity cancers. No association between genetic variants in XRCC1 and disease-specific survival except XRCC1 399. Patients with 399 Arg/Gln and Gln/Gln genotypes showed a significant better survival as compared to Arg/Arg genotype carriers (AHR 0.41 95% CI: 0.18-0.93), especially for those patients younger than 50 years (p = 0.012), in pathological stage III or IV (p = 0.044), and without postoperative radiotherapy (p = 0.012). In summary, XRCC1 280 Arg/His and His/His genotypes were associated with decreased risk of oral cavity cancer. 399 Gln/Gln genotype was associated with increased risk of OPSCC and oral cavity cancer. The putative “high risk haplotypes and diplotypes” were with increased risk of OPSCC. However, 399 Arg/Gln and Gln/Gln genotypes were prognostic factors, especially for those with young age, aggressive tumor stage, and without postoperative radiotherapy for oro and hypopharynx patients. These findings suggest that XRCC1 polymorphisms may play a role in the development and prognosis of OPSCC.
目次 Table of Contents
Introduction 1
Oral and pharyngeal cancer 1
Epidemiology 1
Risk factors of oral and pharyngeal cancer 2
ROS induce DNA damage 4
Base excision repair system 6
XRCC1 structure and function 9
XRCC1 polymorphisms and the risk of OPSCC 12
XRCC1 polymorphisms and the survival of OPSCC 15
Specific Aims 17
Materials and Methods 18
Study Subjects 18
Blood Samples 20
SNP genotyping 21
Statistical Analysis 22
Results 24
Discussions 34
References 43
Tables 60
Figures and Figure Legends 79
Future Perspectives 88
參考文獻 References
Abdel-Rahman, S.Z., and El-Zein, R.A. (2000). The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett 159, 63-71.
Bahar, G., Feinmesser, R., Shpitzer, T., Popovtzer, A., and Nagler, R.M. (2007). Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile. Cancer 109, 54-59.
Berquist, B.R., Singh, D.K., Fan, J., Kim, D., Gillenwater, E., Kulkarni, A., Bohr, V.A., Ackerman, E.J., Tomkinson, A.E., and Wilson, D.M., 3rd (2010). Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population. Nucleic Acids Res 38, 5023-5035.
Bolufer, P., Barragan, E., Collado, M., Cervera, J., Lopez, J.A., and Sanz, M.A. (2006). Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 30, 1471-1491.
Caldecott, K.W. (2003). XRCC1 and DNA strand break repair. DNA Repair (Amst) 2, 955-969.
Caldecott, K.W., Aoufouchi, S., Johnson, P., and Shall, S. (1996). XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res 24, 4387-4394.
Caldecott, K.W., McKeown, C.K., Tucker, J.D., Ljungquist, S., and Thompson, L.H. (1994). An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14, 68-76.
Caldecott, K.W., Tucker, J.D., Stanker, L.H., and Thompson, L.H. (1995). Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res 23, 4836-4843.
Cappelli, E., Taylor, R., Cevasco, M., Abbondandolo, A., Caldecott, K., and Frosina, G. (1997). Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem 272, 23970-23975.
Carles, J., Monzo, M., Amat, M., Jansa, S., Artells, R., Navarro, A., Foro, P., Alameda, F., Gayete, A., and Gel, B. (2006). Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer. International Journal of Radiation OncologyBiologyPhysics 66, 1022-1030.
Chacko, P., Rajan, B., Joseph, T., Mathew, B.S., and Pillai, M.R. (2005). Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to breast cancer. Breast Cancer Res Treat 89, 15-21.
Chen, Y.-J., Chang, J.T.-C., Liao, C.-T., Wang, H.-M., Yen, T.-C., Chiu, C.-C., Lu, Y.-C., Li, H.-F., and Cheng, A.-J. (2008). Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Science 99, 1507-1514.
Chiang, S.L., Chen, P.H., Lee, C.H., Ko, A.M., Lee, K.W., Lin, Y.C., Ho, P.S., Tu, H.P., Wu, D.C., Shieh, T.Y., et al. (2008). Up-regulation of inflammatory signalings by areca nut extract and role of cyclooxygenase-2 -1195G>a polymorphism reveal risk of oral cancer. Cancer Res 68, 8489-8498.
Cho, E.Y., Hildesheim, A., Chen, C.J., Hsu, M.M., Chen, I.H., Mittl, B.F., Levine, P.H., Liu, M.Y., Chen, J.Y., Brinton, L.A., et al. (2003). Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev 12, 1100-1104.
Dantzer, F., Ame, J.C., Schreiber, V., Nakamura, J., Menissier-de Murcia, J., and de Murcia, G. (2006). Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol 409, 493-510.
Dantzer, F., de La Rubia, G., Menissier-De Murcia, J., Hostomsky, Z., de Murcia, G., and Schreiber, V. (2000). Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry 39, 7559-7569.
Dianova, II, Sleeth, K.M., Allinson, S.L., Parsons, J.L., Breslin, C., Caldecott, K.W., and Dianov, G.L. (2004). XRCC1-DNA polymerase beta interaction is required for efficient base excision repair. Nucleic Acids Res 32, 2550-2555.
Duell, E.J., Wiencke, J.K., Cheng, T.J., Varkonyi, A., Zuo, Z.F., Ashok, T.D., Mark, E.J., Wain, J.C., Christiani, D.C., and Kelsey, K.T. (2000). Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21, 965-971.
Dumont, P., Burton, M., Chen, Q.M., Gonos, E.S., Frippiat, C., Mazarati, J.B., Eliaers, F., Remacle, J., and Toussaint, O. (2000). Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28, 361-373.
Fan, J., Otterlei, M., Wong, H.K., Tomkinson, A.E., and Wilson, D.M., 3rd (2004). XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32, 2193-2201.
Fialkow, L., Wang, Y., and Downey, G.P. (2007). Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42, 153-164.
Gal, T.J., Huang, W.Y., Chen, C., Hayes, R.B., and Schwartz, S.M. (2005). DNA repair gene polymorphisms and risk of second primary neoplasms and mortality in oral cancer patients. Laryngoscope 115, 2221-2231.
Geisler, S.A., Olshan, A.F., Cai, J., Weissler, M., Smith, J., and Bell, D. (2005). Glutathione S-transferase polymorphisms and survival from head and neck cancer. Head & Neck 27, 232-242.
Godon, C., Cordelieres, F.P., Biard, D., Giocanti, N., Megnin-Chanet, F., Hall, J., and Favaudon, V. (2008). PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res 36, 4454-4464.
Goode, E.L., Ulrich, C.M., and Potter, J.D. (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1513-1530.
Han, J.Y., Yoon, K.A., Park, J.H., Lee, Y.J., Lee, G.K., Han, J.H., Yoon, S.J., Yun, T., Kim, H.T., and Lee, J.S. (2011a). DNA repair gene polymorphisms and benefit from gefitinib in never-smokers with lung adenocarcinoma. Cancer 117, 3201-3208.
Heale, J.T., Ball, A.R., Jr., Schmiesing, J.A., Kim, J.S., Kong, X., Zhou, S., Hudson, D.F., Earnshaw, W.C., and Yokomori, K. (2006). Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21, 837-848.
Ho, P.S., Ko, Y.C., Yang, Y.H., Shieh, T.Y., and Tsai, C.C. (2002). The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. J Oral Pathol Med 31, 213-219.
Ho, T., Li, G., Lu, J., Zhao, C., Wei, Q., and Sturgis, E.M. (2007). X-ray repair cross-complementing group 1 (XRCC1) single-nucleotide polymorphisms and the risk of salivary gland carcinomas. Cancer 110, 318-325.
Hoeijmakers, J.H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374.
Horton, J.K., Watson, M., Stefanick, D.F., Shaughnessy, D.T., Taylor, J.A., and Wilson, S.H. (2008). XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 18, 48-63.
Hsieh, L.L., Chien, H.T., Chen, I.H., Liao, C.T., Wang, H.M., Jung, S.M., Wang, P.F., Chang, J.T., Chen, M.C., and Cheng, A.J. (2003). The XRCC1 399Gln polymorphism and the frequency of p53 mutations in Taiwanese oral squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev 12, 439-443.
Hsieh, W.C., Cheng, Y.W., Lin, C.J., Chou, M.C., Chen, C.Y., and Lee, H. (2008). Prognostic Significance of X-ray Cross-complementing Group 1 T-77C Polymorphism in Resected Non-small Cell Lung Cancer. Japanese Journal of Clinical Oncology 39, 81-85.
Hu, J.J., Smith, T.R., Miller, M.S., Mohrenweiser, H.W., Golden, A., and Case, L.D. (2001). Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 22, 917-922.
Hu, Z., Ma, H., Chen, F., Wei, Q., and Shen, H. (2005). XRCC1 polymorphisms and cancer risk: a meta-analysis of 38 case-control studies. Cancer Epidemiol Biomarkers Prev 14, 1810-1818.
Huang, C., Zhang, Z., Ding, M., Li, J., Ye, J., Leonard, S.S., Shen, H.M., Butterworth, L., Lu, Y., Costa, M., et al. (2000). Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 275, 32516-32522.
Hunter, K. (2006). Host genetics influence tumour metastasis. Nat Rev Cancer 6, 141-146.
Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J Clin 61, 69-90.
Kietthubthew, S., Sriplung, H., Au, W.W., and Ishida, T. (2006). Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health 209, 21-29.
Kitamura, Y., Moriguchi, M., Kaneko, H., Morisaki, H., Morisaki, T., Toyama, K., and Kamatani, N. (2002). Determination of probability distribution of diplotype configuration (diplotype distribution) for each subject from genotypic data using the EM algorithm. Ann Hum Genet 66, 183-193.
Kiuru, A., Lindholm, C., Heilimo, I., Ceppi, M., Koivistoinen, A., Ilus, T., Hirvonen, A., Norppa, H., and Salomaa, S. (2005). Influence of DNA repair gene polymorphisms on the yield of chromosomal aberrations. Environ Mol Mutagen 46, 198-205.
Klungland, A., Hoss, M., Gunz, D., Constantinou, A., Clarkson, S.G., Doetsch, P.W., Bolton, P.H., Wood, R.D., and Lindahl, T. (1999). Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 3, 33-42.
Ko, Y.C., Huang, Y.L., Lee, C.H., Chen, M.J., Lin, L.M., and Tsai, C.C. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 24, 450-453.
Krwawicz, J., Arczewska, K.D., Speina, E., Maciejewska, A., and Grzesiuk, E. (2007). Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim Pol 54, 413-434.
Kubota, Y., Nash, R.A., Klungland, A., Schar, P., Barnes, D.E., and Lindahl, T. (1996). Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J 15, 6662-6670.
Kuptsova, N., Kopecky, K.J., Godwin, J., Anderson, J., Hoque, A., Willman, C.L., Slovak, M.L., and Ambrosone, C.B. (2007). Polymorphisms in DNA repair genes and therapeutic outcomes of AML patients from SWOG clinical trials. Blood 109, 3936-3944.
Laird, N.M. and Lange, C. (2006). Family based designs in the age of large scale gene association studies, Nature Reviews 7, 385–394.
Lan, L., Nakajima, S., Oohata, Y., Takao, M., Okano, S., Masutani, M., Wilson, S.H., and Yasui, A. (2004). In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc Natl Acad Sci U S A 101, 13738-13743.
Lin, W.J., Jiang, R.S., Wu, S.H., Chen, F.J., and Liu, S.A. (2011). Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J Oncol 2011, 525976.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-715.
Lindahl, T., and Wood, R.D. (1999). Quality control by DNA repair. Science 286, 1897-1905.
Lu, A.L., Li, X., Gu, Y., Wright, P.M., and Chang, D.Y. (2001). Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys 35, 141-170.
Lunn, R.M., Langlois, R.G., Hsieh, L.L., Thompson, C.L., and Bell, D.A. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 59, 2557-2561.
MacAuley, A., and Ladiges, W.C. (2005). Approaches to determine clinical significance of genetic variants. Mutat Res 573, 205-220.
Macip, S., Igarashi, M., Fang, L., Chen, A., Pan, Z.Q., Lee, S.W., and Aaronson, S.A. (2002). Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21, 2180-2188.
Mahimkar, M.B., Samant, T.A., Kannan, S., and Patil, T. (2010). Influence of genetic polymorphisms on frequency of micronucleated buccal epithelial cells in leukoplakia patients. Oral Oncol 46, 761-766.
Majumder, M., Sikdar, N., Ghosh, S., and Roy, B. (2007). Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int J Cancer 120, 2148-2156.
Majumder, M., Sikdar, N., Paul, R.R., and Roy, B. (2005). Increased risk of oral leukoplakia and cancer among mixed tobacco users carrying XRCC1 variant haplotypes and cancer among smokers carrying two risk genotypes: one on each of two loci, GSTM3 and XRCC1 (Codon 280). Cancer Epidemiol Biomarkers Prev 14, 2106-2112.
Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., and de Murcia, G. (1998). XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18, 3563-3571.
Maynard, S., Schurman, S.H., Harboe, C., de Souza-Pinto, N.C., and Bohr, V.A. (2009). Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30, 2-10.
Miller, M.C., 3rd, Mohrenweiser, H.W., and Bell, D.A. (2001). Genetic variability in susceptibility and response to toxicants. Toxicol Lett 120, 269-280.
Nair, U.J., Obe, G., Friesen, M., Goldberg, M.T., and Bartsch, H. (1992). Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ Health Perspect 98, 203-205.
Okano, S., Lan, L., Caldecott, K.W., Mori, T., and Yasui, A. (2003). Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 23, 3974-3981.
Pachkowski, B.F., Winkel, S., Kubota, Y., Swenberg, J.A., Millikan, R.C., and Nakamura, J. (2006). XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking. Cancer Res 66, 2860-2868.
Petermann, E., Keil, C., and Oei, S.L. (2006). Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER. DNA Repair (Amst) 5, 544-555.
Petersen, P.E. (2005). Strengthening the prevention of oral cancer: the WHO perspective. Community Dent Oral Epidemiol 33, 397-399.
Quintela-Fandino, M., Hitt, R., Medina, P.P., Gamarra, S., Manso, L., Cortes-Funes, H., and Sanchez-Cespedes, M. (2006b). DNA-repair gene polymorphisms predict favorable clinical outcome among patients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy. J Clin Oncol 24, 4333-4339.
Ramachandran, S., Ramadas, K., Hariharan, R., Rejnish Kumar, R., and Radhakrishna Pillai, M. (2006). Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol 42, 350-362.
Rice, P.A. (1999). Holding damaged DNA together. Nat Struct Biol 6, 805-806.
Roldan-Arjona, T., and Ariza, R.R. (2009). Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681, 169-179.
Seedhouse, C., Bainton, R., Lewis, M., Harding, A., Russell, N., and Das-Gupta, E. (2002). The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100, 3761-3766.
Shen, M.R., Jones, I.M., and Mohrenweiser, H. (1998a). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58, 604-608.
Shen, M.R., Zdzienicka, M.Z., Mohrenweiser, H., Thompson, L.H., and Thelen, M.P. (1998b). Mutations in hamster single-strand break repair gene XRCC1 causing defective DNA repair. Nucleic Acids Res 26, 1032-1037.
Sobol, R.W., Horton, J.K., Kuhn, R., Gu, H., Singhal, R.K., Prasad, R., Rajewsky, K., and Wilson, S.H. (1996). Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379, 183-186.
Sreeja, L., Syamala, V.S., Syamala, V., Hariharan, S., Raveendran, P.B., Vijayalekshmi, R.V., Madhavan, J., and Ankathil, R. (2008). Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol 134, 645-652.
Sterpone, S., and Cozzi, R. (2010). Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair. J Nucleic Acids 2010.
Sturgis, E.M., Castillo, E.J., Li, L., Zheng, R., Eicher, S.A., Clayman, G.L., Strom, S.S., Spitz, M.R., and Wei, Q. (1999a). Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis 20, 2125-2129.
Sturgis, E.M., Clayman, G.L., Guan, Y., Guo, Z., and Wei, Q. (1999b). DNA repair in lymphoblastoid cell lines from patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 125, 185-190.
Tae, K., Lee, H.S., Park, B.J., Park, C.W., Kim, K.R., Cho, H.Y., Kim, L.H., Park, B.L., and Shin, H.D. (2004). Association of DNA repair gene XRCC1 polymorphisms with head and neck cancer in Korean population. Int J Cancer 111, 805-808.
Taylor, R.M., Moore, D.J., Whitehouse, J., Johnson, P., and Caldecott, K.W. (2000). A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair. Mol Cell Biol 20, 735-740.
Taylor, R.M., Thistlethwaite, A., and Caldecott, K.W. (2002). Central role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair. Mol Cell Biol 22, 2556-2563.
Tebbs, R.S., Flannery, M.L., Meneses, J.J., Hartmann, A., Tucker, J.D., Thompson, L.H., Cleaver, J.E., and Pedersen, R.A. (1999). Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208, 513-529.
Thompson, L.H., and West, M.G. (2000). XRCC1 keeps DNA from getting stranded. Mutat Res 459, 1-18.
Trucco, C., Oliver, F.J., de Murcia, G., and Menissier-de Murcia, J. (1998). DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26, 2644-2649.
Tuimala, J., Szekely, G., Gundy, S., Hirvonen, A., and Norppa, H. (2002). Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 23, 1003-1008.
Tuimala, J., Szekely, G., Wikman, H., Jarventaus, H., Hirvonen, A., Gundy, S., and Norppa, H. (2004). Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: effects on levels of sister chromatid exchanges and chromosomal aberrations. Mutat Res 554, 319-333.
Vodicka, P., Kumar, R., Stetina, R., Sanyal, S., Soucek, P., Haufroid, V., Dusinska, M., Kuricova, M., Zamecnikova, M., Musak, L., et al. (2004). Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 25, 757-763.
Wang, Y., Spitz, M.R., Zhu, Y., Dong, Q., Shete, S., and Wu, X. (2003). From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair (Amst) 2, 901-908.
Wei, Q., Frazier, M.L., and Levin, B. (2000). DNA repair: a double-edged sword. J Natl Cancer Inst 92, 440-441.
Whitehouse, C.J., Taylor, R.M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D.D., Weinfeld, M., and Caldecott, K.W. (2001). XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104, 107-117.
Wilson, D.M., 3rd, and Bohr, V.A. (2007). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst) 6, 544-559.
Wiseman, H., and Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313 ( Pt 1), 17-29.
Wong, H.K., and Wilson, D.M., 3rd (2005). XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair. J Cell Biochem 95, 794-804.
Xing, D., Qi, J., Miao, X., Lu, W., Tan, W., and Lin, D. (2002). Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. Int J Cancer 100, 600-605.
Yarosh, D.B., Pena, A., and Brown, D.A. (2005). DNA repair gene polymorphisms affect cytotoxicity in the National Cancer Institute Human Tumour Cell Line Screening Panel. Biomarkers 10, 188-202.
Zhou, C., Zhou, Y., Li, J., Zhang, Y., Jiang, L., Zeng, X., Feng, X., and Wang, Z. (2009). The Arg194Trp polymorphism in the X-ray repair cross-complementing group 1 gene as a potential risk factor of oral cancer: a meta-analysis. Tohoku J Exp Med 219, 43-51.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code