Responsive image
博碩士論文 etd-0825111-140228 詳細資訊
Title page for etd-0825111-140228
論文名稱
Title
資料相關性疊加訓練系統中無資料辨別問題之完美序列預編碼架構
A Precoding Scheme Based on Perfect Sequences without Data Identification Problem for Data-Dependent Superimposed Training
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2011-08-25
關鍵字
Keywords
分時多工、完美序列、資料相關性疊加訓練技術、反離散傅立葉轉換矩陣、奇異值分解
Zadoff–Chu sequences, data-dependent superimposed training, inverse discrete Fourier transform, singular value decomposition
統計
Statistics
本論文已被瀏覽 5717 次,被下載 296
The thesis/dissertation has been browsed 5717 times, has been downloaded 296 times.
中文摘要
通道估測在接收端是一個相當重要的環節,領航訊號以等間隔方式安插於傳送資料之中將會得到最小通道均方差。傳統分時多工的方法是將資料與領航訊號以不同的時間點傳送,此方法會降低頻寬使用效率;另一方法是將訓練序列與資料直接疊加之後再傳送,但此估測的效果不佳。當使用資料相關性疊加訓練技術時,不僅保留了頻寬效益且估測的通道頻率響應精準度與分時多工技術一樣,但由於資料在傳送之前必須移除資料的循環平均值,而接收端在不知道此循環平均值的情況下無法有效的將訊號還原,如果利用較高的調變技術,接收端發生誤判的機率更加嚴重,錯誤率高居不下。
本論文中,我們利用奇異值分解分析發生誤判的主要原因並且使用預編碼技術解決此問題,根據分析的結果列出幾項有利於預編碼矩陣提升系統效能的條件,並且提出一個同時滿足這些條件的預編碼矩陣。此矩陣是由一反離散傅立葉轉換矩陣與一對角元素為完美序列的對角矩陣所構成。最後,利用電腦模擬驗證我們的方法是可行的,由錯誤率效能圖得知資料誤判的問題已藉由提出的方法解決。
Abstract
In data-dependent superimposed training (DDST) system, the data sequence subtracts a data-dependent sequence before transmission. The receiver cannot correctly find the unknown term which causes an error floor at high SNR.
In this thesis, we list some helpful conditions to enhance the performance for precoding design in DDST system, and analyze the major cause of data misidentification by singular value decomposition (SVD) method. Finally, we propose a precoding matrix based on [C.-P. Li and W.-C. Huang, “A constructive representation for the Fourier dual of the Zadoff–Chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221-4224, Nov. 2007]. The precoding matrix is constructed by an inverse discrete Fourier transform (IDFT) matrix and a diagonal matrix with the elements consist of an arbitrary perfect sequence. The proposed method satisfies these conditions and simulation results show that the data identification problem is solved.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Chapter 1 Introduction 1
Chapter 2 System Model 5
2.1 Traditional SC-FDE System 5
2.2 DDST System 6
Chapter 3 Previous Literatures 12
3.1 Iterative Symbol-by-Symbol Detection Algorithm 12
3.2 Infinite Constellation Shift Algorithm 13
3.3 Gradient Infinite Constellation Shift Algorithm 17
Chapter 4 Proposed Method 19
4.1 Condition Description 19
4.2 Real or Complex Precoding Matrix 27
4.3 Proposed Precoding Matrix 30
Chapter 5 Simulation Results 32
Chapter 6 Conclusion and Future Works 37
6.1 Conclusions 37
6.2 Future Works 38
References 39
Abbreviations 44
參考文獻 References
[1] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std. 802.16-2004, Oct. 2004.
[2] IEEE Draft Standard for Broadband over Power Line Networks:Medium Access Control and Physical Layer Specifications, IEEE P1901/D3.00, Feb. 2010.
[3] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005.
[4] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2113-2123, Dec. 2002.
[5] K. Hayashi and H. Sakai, “Interference cancellation schemes for single carrier block transmission with insufficient cyclic prefix,” EURASIP J. Wireless Commun. Netw., vol. 2008, 2008, doi:10.1155/2008/130747, Article ID 130747, 12 pp.
[6] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, no. 2, pp. 100-109, Feb. 1995.
[7] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol. 44, pp. 1122-1128, Aug. 1998.
[8] M. Ghogho, D. McLernon, E. Ananthram-Hernandez, and A. Swami, “Channel estimation and symbol detection for block transmission using data-dependent superimposed training,” IEEE Signal Process. Lett., vol. 12, no. 3, pp. 226-229, Mar. 2005.
[9] M. Ghogho, T. Whitworth, A. Swami, and D. McLernon, “Full-rank and rank-deficient precoding schemes for single-carrier block transmissions,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4433-4442, Nov. 2009.
[10] F. Wang, J. Tan, and Y. Li, “Precoded single carrier data transmission with orthogonal frequency domain multiplexing pilots,” in Proc. IEEE ICC, Beijing, CHN, May 2008, pp. 673-677.
[11] B. Muquet, M. d. Courville, and P. Duhamel, “Subspace-based blind and semi-blind channel estimation or OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1699-1712, July 2002.
[12] A. Petropulu, R. Zhang, and R. Lin, “Blind OFDM channel estimation through simple linear precoding,” IEEE Trans. Wireless Commun., vol. 3, no. 2, pp. 647-655, Mar. 2004.
[13] D. McLernon, E. Alameda-Hernandez, and A. G. Orozco-Lugo, “Implicitly- trained channel estimation and equalization with zero mean input data packets,” in Proc. IEEE ISSPIT, Rome, ITA, Dec. 2004, pp. 136-139.
[14] A. G. Orozco-Lugo, M. M. Lara, and D. C. McLernon, “Channel estimation using implicit training,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 240-254, Jan. 2004.
[15] L. Deneire, B. Gyselinckx, and M. Engels, “Training sequence versus cyclic prefix—a new look on signal carrier communication,” IEEE Commun. Letters, vol. 5, no. 7, pp. 292-294, July 2001.
[16] S. B. Slimane, “Reducing the peak-to-average power ratio of OFDM signals through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686-695, Mar. 2007.
[17] C. D. Chung, “Spectral precoding for constant-envelope OFDM,” IEEE Trans. Commun. vol. 58, no. 2, pp. 555-567, Feb. 2010.
[18] M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun. vol. 59, no. 3, pp. 844-853, Mar. 2011.
[19] T. Hwang and Y. (G) Li “A bandwidth efficient block transmission with frequency-domain equalization,” in Proc. IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication, Shanghai, CHN, vol. 2, June 2004, pp. 433-436.
[20] K. Takeda, H. Tomeba, and F. Adachi, “Single-carrier transmission with joint Tomlinson-Harashima precoding and frequency-domain equalization,” in Proc. IEEE VTS APWCS, Daejoen, KOR., Aug. 2006, pp.262-266.
[21] S.M.A. Moosvi, D. C. McLernon, A. G. Orozco-Lugo, M. M. Lara, and M. Ghogho, “Carrier frequency offset estimation using data-dependent superimposed training,” IEEE Signal Process. Lett., vol. 12, no. 3, pp. 179-181, Mar. 2008.
[22] J. Lee, T. Hwang, and Y. (G) Li, “Signal detection for EST based modulation in doubly-selective channels,” IEEE Trans. Signal Process., vol. 57, no. 48, pp. 3287-3291, Aug. 2009.
[23] T. Hwang and Y. (G) Li, “Optimum filtering for energy-spreading transform-based equalization,” IEEE Trans. Signal Process., vol. 55, no. 3, pp. 1182-1187, Mar. 2007.
[24] T. Hwang and Y. (G) Li, “Novel iterative equalization based on energy-spreading transform,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 190-203, Jan. 2006.
[25] W. Wen, M. Xia, and Y.-C. Wu, “Low complexity pre-equalization algorithms for zero-padded block transmission,” IEEE Trans. Wireless Commun., vol. 9, no. 8, pp. 2498-2504, Aug. 2010.
[26] K. Takeda, H. Tomeba, and F. Adachi, “Joint Tomlinson-Harashima precoding and frequency-domain equalization for broadband single-carrier transmission,” IEICE Trans. Commun., vol. E91-B, no. 1, pp. 258-266, Jan. 2008.
[27] H. Li, X. Yuan, X. Lin, and L. Ping, “On water-filling precoding for coded single-carrier systems,” IEEE Commun. Lett., vol. 13, no. 1, pp. 34-36, Jan. 2009.
[28] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000.
[29] T. Whitworth, M. Ghogho, and D.C. McLernon, “Data identifiability for data-dependent superimposed training,” in Proc. IEEE ICC, Glasgow, UK, June 2007, pp. 2545-2550.
[30] B. Noble and J. W. Daniel, Applied Linear Algebra. 3rd ed. Prentice Hall, 1988.
[31] D. Forney and V. Eyuboglu, “Combined equalization and coding using precoding,” IEEE Comm. Mag., vol. 29, pp. 24-34, Dec. 1991.
[32] M. V. Clark, “Adaptive frequency-domain equalization and diversity combining for broadband wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1385-1395, Oct. 1998.
[33] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal, Processing. 2nd ed., Prentice Hall, 1999.
[34] C.-P. Li and W.-C. Huang, “A constructive representation for the Fourier dual of the Zadoff–Chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221-4224, Nov. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code