Responsive image
博碩士論文 etd-0825111-153503 詳細資訊
Title page for etd-0825111-153503
論文名稱
Title
應用聲光生物物理效應於仙女蝦卵活化之研究
The Biological Activation of Fairy Shrimp Cyst Induced by Ultrasound Exposure and Light
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2011-08-25
關鍵字
Keywords
田口設計方法、共振頻率、仙女蝦、光照、超音波
ultrasound, light, resonant frequency, Taguchi Methods, Fairy Shrimp
統計
Statistics
本論文已被瀏覽 5708 次,被下載 691
The thesis/dissertation has been browsed 5708 times, has been downloaded 691 times.
中文摘要
仙女蝦屬於浮游甲殼生物,主要提供一般民眾觀賞飼養及學生自然科學教材。由於仙女蝦在市場上的需求量日漸增大,如何提升仙女蝦休眠卵的孵化率,乃是一個重要的課題。本研究旨在探討光照及超音波聲場於仙女蝦休眠卵的孵化過程中,能否增加其活化效應提升孵化率。過去在光照對休眠卵的孵化研究中發現,休眠卵內色素的吸收光譜與實驗有效孵化的光波長相符。超音波在生物科技方面的應用,過去主要以破壞細胞抑制生物的生長為主,但若能小心調整處理的參數,如頻率、強度、照射時間、照射脈衝等,也可以得到增益的效果。本實驗的設計先行以LED光源分別施以不同光波長及光強度照射休眠卵,研究光線對於孵化所產生的響應,且全部的實驗皆以檯燈光源作為對照組。再分別利用超音波洗淨機與水浸式探頭激振休眠卵,超音波洗淨機用以討論暫態空孔效應對孵化的影響;而水浸式探頭經Rayleigh-Plesset空孔氣泡方程式計算求得休眠卵共振頻率之後為基本照射頻率,並設定非共振頻率作比較。最後,利用田口方法設計一式直交表探討光波長、光強度、共振頻率及聲強度等參數,對仙女蝦孵化的貢獻值與信任水準,以討論超音波聲場與光線對孵化所扮演的角色。本研究成果顯示,單純利用檯燈照射的對照組有25 %的孵化率;在光實驗藍光照射可得到最高42.5 %的孵化率;超音波實驗頻率0.25 MHz聲強39.2 mW/cm2可得到最高35 %的孵化率;在確認實驗中休眠卵藍光與超音波0.25 MHz聲強30.9 mW/cm2的照射下,可以得到48.3 %的孵化率,這也是本實驗所得到的最高孵化率。最後,由田口分析得知光源影響孵化率之信任水準達100 %,代表光源還是影響孵化最關鍵的因子,但由超音波實驗與對照組的比較,超音波對卵的活化還是有一定的效用。本研究成果,可應用於瀕臨絕種或是高經濟價值物種的復育上,以提高人工繁殖的孵化率。
Abstract
Fairy shrimp is an anostraca plankton which is raised for watching and scientific study. In recent year, due to the large requirement of fairy shrimp in the market, to increase the hatching rate of fairy shrimp is an important topic. It is found that when an Artemia Cysts hatched by light, the pigment absorption spectra in the Cysts match with the optical wavelength of the experimental incubators. Furthermore, the effect of ultrasound can stimulate the growth or activation of the fairy shrimp, when the ultrasonic parameters of frequency, intensity, exposure time and exposure period are properly controlled in the hatching experiments. This thesis is then focusing on the biological activities to increase the hatching rate of fairy shrimp by light and ultrasound exposure. This work investigates the light effect on the hatching experiment using different wavelength and intensity of LED light; in addition, Cysts is exposed to ultrasound by ultrasonic cleaner and transducer. The resonant frequency of the Cysts is obtained from Rayleig –Plesset bubble activation formula. The radiation of the resonant and non-resonant regions during the hatching experiments are then set up by this resonant frequency for comparison. Finally, according to the experimental results, the correlations of hatching rate with light wavelength, light intensity, resonant frequency and ultrasound intensity are studied by Taguchi Method to understand the play role of the light and ultrasound. The research results show that the hatching rate is 25 % by lamp irradiation, and the maximum hatching rate is 42.5 % by blue light in the light experiment. In ultrasound experiment, the highest incubate percentage, 35 %, is obtained by ultrasound frequency 0.25 MHz and ultrasound intensity 39.2 mW/cm2. In the confirmed test, the blue light plus ultrasound frequency of 0.25 MHz plus ultrasound intensity of 30.9 mW/cm2 can let the incubate percentage up to 48.3%. This is the highest incubate percentage one can get from these experiments. Finally, the results of Taguchi analysis shows that the Confidence level of light affecting the hatching rate is 100%; thus, light source is the most critical factor to affect the hatching procedure. The results of this research can be referred by an endangered species or high economic value of species to increase the rate of hitching.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 仙女蝦介紹 7
1.3.1 生物分類 7
1.3.2 無甲目生物與仙女蝦特性 8
1.3.3 休眠卵 10
1.4 研究目的 11
第二章 基本理論 16
2.1 光的特質與輻射能量參數 16
2.2 LED光源介紹 19
2.3 超音波基本理論 20
2.3.1 波動方程式推導 21
2.3.2 介質的粒子速度與粒子加速度 22
2.3.3 超音波的強度與能量 23
2.4 超音波生物效應 23
2.4.1 機械效應 23
2.4.2 空孔效應 24
2.4.3 空孔氣泡方程式 25
2.5 田口品質工程 25
2.5.1 實驗設計方法 26
2.5.2 品質損失函數 27
2.5.3 訊號雜訊比(S/N比) 28
2.5.4 因子回應表 29
2.5.5 變異數分析 30
第三章 實驗方法與步驟 36
3.1 實驗方法 36
3.1.1 實驗設備 36
3.1.2 LED光源照射器材設計 38
3.1.3 共振頻率計算 39
3.1.4 超音波照射系統設計 40
3.2 實驗參數設定 42
3.2.1 光源參數量測 42
3.2.2 超音波參數量測 43
3.3 實驗步驟 44
3.3.1 休眠卵的選取與孵化 44
3.3.2 實驗方法與步驟 45
第四章 實驗結果與討論 65
4.1實驗環境設定 .65
4.2 實驗結果統計紀錄 65
4.2.1 表格與圖形資料 66
4.2.2 田口數據分析 67
4.3 結果與討論 69
4.3.1 光源對孵化的影響 69
4.3.2 超音波對孵化的影響 70
4.3.3 誤差的探討 70
第五章 結論與建議 81
5.1 結論 81
5.2 未來展望與建議 82
參考文獻 84
附錄A 88
參考文獻 References
1. L.O. Sanoamuang, N. Saengphan and G. Murugan, “First Record of the Family Thamnocephalidae (Crustacea: Anostraca) from Southeast Asia and description of a new species of Branchinella,” Hydrobiologia, Vol. 486, pp. 63–69, 2002.
2. 詹益豪,超音波誘發豐年蝦卵活化及助長之研究,國立中山大學機械與機電工程研究所碩士論文,中華民國92年7月。
3. E.A. Neppiras, “Acoustic Cavitation,” Physics Reports-Review Section of Physics Letters, Vol. 61, pp. 159-251, 1980.
4. A.V. Linden, R. Blust and W. Dexleir, ”The Influence of Light on the Hatching of Artemia Cysts (Anostraca : Branchiopoda : Crustacea),” Journal of Experimental Marine Biology and Ecology, Vol. 92, pp. 207-214, 1985.
5. A.V. Linden, I. Vankerckhoven, R. Caubergs and W. Dexleir, “Action Spectroscopy of Light-Induced Hatching of Artemia Cysts (Branchiopoda: Crustacea),” Marine Biology, Vol. 91, pp. 239-243, 1986.
6. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novickovas and A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” Journal of Physics D: Applied Physics, Vol. 38, pp. 3182-3187, 2005.
7. 楊旭光,張國賢,水下反沾附技術,海下技術季刊,第五卷第二期,pp. 47-50,民國84年6月。
8. W.T. Coakley and D. Hampton, “Quantitative Relationships between Ultrasonic Cavitation and Effects upon Amoebae at 1 MHz,” J. Acoust. Soc. Am., Vol. 50(6), pp. 1546-1553, 1971.
9. S. Levi, P. Gustot and H. Galperin-Lemaitre, “In vivo Effect of Ultrasound at Human Therapeutic Doses on Marrow Cell Chromosomes of Golden Hamster,” Humangenetil, Vol. 25, pp. 133-141, 1974.
10. E.L. Cartensen, S.Z. Child, W.K. Law, D.R. Horwitz and M.W. Miller, “Caviation as A Mechanism for The Biological Effects of Ultrasound on Plant Roots,” J. Acoust. Soc. Am., Vol. 66(5), pp. 1285-1291, 1979.
11. D.L. Miller, “Cell Death Thresholds in Elodea for 0.45-10MHz Ultrasound Compared to Gas-Body Resonance Theory,” Ultrasound in Med. & Biol., Vol. 5(4), pp. 351-357, 1979.
12. S. B. Barnett, “The Influence of Ultrasound on Embryonic Development,” Ultrasound in Medicine & Biology, Vol. 9(1), pp. 19-24, 1983.
13. D.A. Dooley, S.Z. Child, E.L. Cartensen and M.W. Miller, “The Effects of Continuous Wave and Pulsed Ultrasound on Rat Thymocytes In Vitro,” Ultrasound in Med. & Biol., Vol. 9, pp. 379-384, 1983.
14. E.L. Carstensen and H.G. Flynn, “The Potential for Transient Cavitation in Pulsed Ultrasound,” Ultrasound in Med. & Biol., Vol. 8, pp. 720-724, 1982.
15. C.F. Hayes, H.T.G. Chingon, M.B. Ikeda, S.L. Sanderson and J. Deaver, “Ultrasonic effects Dacus Dorsalis,” Ultrasound Med. Biol., Vol. 9(2), pp. 185-189, 1983
16. S.Z. Child, C.H. Raeman, E. Walters and E.L. Carstensen, “The Sensitivity of Drosophila Larvae to Continuous-Wave Ultrasound,” Ultrasound Med. Biol., Vol. 18(8), pp. 725-728, 1992.
17. O. Schläfer, M. Sievers, H. Klotzbücher and T.I. Onyeche, “Improvement of biological activity by low energy ultrasound assisted bioreactors,” Ultrasonics, Vol. 38, pp. 711-716, 2000.
18. A.C. Chang, “Study of Ultrasonic Wave Treatments for Accelerating the Aging Process in a Rice Alcoholic Beverage,” Food Chemistry, Vol. 92, pp.337–342, 2005.
19. H.M. Santos and J.L. Capelo, “Trends in Ultrasonic-Based Equipment for Analytical Sample Treatment,” Talanta, Vol. 73, pp. 795–802, 2007.
20. M. Valero, N. Recrosio, D. Saura, N. Mun˜oz, N. Martı’ and V. Lizama, “Effects of Ultrasonic Treatments in Orange Juice Processing,” Journal of Food Engineering, Vol. 80, pp. 509–516, 2007.
21. G. Zhang, P. Zhang, J. Gao and Y. Chen, ”Using acoustic cavitation to improve the bio-activity of activated sludge,” Bioresource Technology, Vol. 99(5), pp. 1497–1502, 2008.
22. C. Liu, B. Xiao, A. Dauta, G. Peng, S. Liu and Z. Hua, “Effect of Low Power Ultrasonic Radiation on Anaerobic Biodegradability of Sewage Sludge,” Bioresource Technology, Vol. 100, pp. 6217–6222, 2009.
23. Y.P. Guo, S.H. Kim, S.H. Sung and P.H. Lee, “Effect of Ultrasonic Treatment of Digestion Sludge on Bio-Hydrogen Production from Sucrose by Anaerobic Fermentation,” International Journal of Hydrogen energy, Vol. 35, pp. 3450-3455, 2010.
24. 黃怡澄,生物體內超音波共振效應之應用,國立中山大學機械工程研究所博士論文,中華民國92年12月。
25. 陳明凱,超音波照射下之草履蟲生物效應機制研究,國立中山大學機械工程研究所碩士論文,中華民國90年6月。
26. S.K. Yang, Y.C. Huang and Y.H. Zhan, “The Dependence between Ultrasonic Exposure Time and Biological Reactions in the Paramecium,” Biomedical Engineering: Applications, Basis and Communications, Vol. 18, No. 2, pp. 87-94, 2006.
27. Y.C. Huang and S.K. Yang, “A Mechanism of Ultrasonic Irradiation to Assist or Inhibit the Paramecium Cells,” Biomedical Engineering-Applications Basis Communications, Vol. 20, No. 6, pp. 353-363, 2008.
28. 吳慶餘,基礎生命科學,藝軒圖書出版社,p14,中華民國92年。
29. TaiBNET台灣物種名錄。2010年9月,取自http://taibnet.sinica.edu.tw /home.php.
30. J.W. Martin and S.L. Boyce, “Crustacea: Non-Cladoceran Branchiopoda,” Freshwater Invertebrates of the Malaysian Region, Vol. 25, pp. 284-297, 2004.
31. W. Purivirojkul and S. Khidprasert, “First Report of Microsporidiosis in Fairy Shrimp Branchinella Thailandensis (Sanoamuang, Saengphan and Murugan, 2002) ,” Aquaculture J., Vol. 289, pp. 185-190, 2009.
32. 周蓮香與黃祥麟,陽明山國家公園湖沼枝額蟲 (Branchinella ugenumaensis, Ishikawa)之生活史研究,內政部營建署陽明山國家公園管理處委託研究報告,台北市,中華民國93年。
33. FAIRY SHRIMP。2010年9月,取自http://www.captain.at/fairy-shrimp.php.
34. 蔡盈盈,紫外光線對生物生存影響的初步探討,臺北市立內湖高級中學,中華民國99年3月。
35. 李冠卿,近代光學,聯經出版事業公司,中華民國77年9月。
36. 照明學會,照明手冊,全華科技圖書股份有限公司,中華民國95年10月。
37. 郭浩中、賴芳儀與郭守義,LED原理與應用,五南圖書出版公司,中華民國98年6月。
38. 史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,中華民國99年10月。
39. 方煒與饒瑞佶,高亮度發光二極體在生物產業的應用,中華農學會報,第5卷,第5期,頁432-446。中華民國93年
40. 劉金源,水中聲學-原理與運用,國立中山大學出版社,pp. 109-113,民國88年3月。
41. 賴耿陽,超音波工學理論實務,復漢出版社,中華民國81年8月。
42. 馮若,超聲手冊,南京大學出版社,中華民國90年5月。
43. 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,中華民國99年3月。
44. L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of Acoustics, New York: Wiley, pp. 104-112, 127-131, 1982.
45. 鄭錦文,水中吸音材料於不同水深之特性探討,國立中山大學海下技術研究所碩士論文,中華民國89年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code