Responsive image
博碩士論文 etd-0825117-125541 詳細資訊
Title page for etd-0825117-125541
論文名稱
Title
利用乾式蝕刻技術製作超薄BCB異質整合波導
Hybrid Heterogeneously Integrated Optical Waveguide by Ultra-thin DVS-BCB Adhesive Bonding of III-V/Silicon using Selective Dry Etching
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-15
繳交日期
Date of Submission
2017-10-17
關鍵字
Keywords
自我對準技術、光模轉換器、選擇性乾式蝕刻技術、晶圓貼合、異質整合
self-alignment technology, spot size converter, selective dry etch technology, heterogeneous integration, wafer bonding
統計
Statistics
本論文已被瀏覽 5636 次,被下載 0
The thesis/dissertation has been browsed 5636 times, has been downloaded 0 times.
中文摘要
三維IC (Three-Dimensional Integrate Circuit)在現今積體電路及光通訊製程中扮演縮小體積路徑與低損耗傳輸的功能,利用先進的CMOS矽製程及三五族材料上主動元件可整合的特性達到異質整合。然而,層與層間的連結及材料結構製程非常重要,我們利用高選擇性乾式蝕刻和自我對準技術達到在次微米級垂直波導下異質材料間的光場轉換,以利各種後續光電元件製作和低損耗傳輸的使用。
本論文主要是三五族量子井材料與絕緣層覆矽晶圓(Silicon on Insulator)以晶圓貼合的方式結合,使量子井與矽材料形成一主動層,可用於製作奈米級複合式波導,透過CF4及O2混合氣體乾式蝕刻,達到具有選擇性且乾淨的波導製程,形成足以使光場侷限的結構。透過稀釋BCB黏著劑將三五族與矽結合,在三五族波導前端設計出漸變式結構,以三五族和矽波導折射率匹配來達到共振耦合。我們將光由矽波導耦合至三五族波導並成功觀察到光場,達成層與層材料間的連接。
Abstract
Nowadays, three-dimensional integrated circuit (3-D IC) plays an important role in integrated circuit and optic communication for low loss transmission and bulk shrinking. We use advanced CMOS processing and active devices’ integration in III-V materials for heterogeneous integration. However, the connection of layer-to-layer and materials structure processing are extremely important. We adopt high selective dry etch and self-alignment technology for light transformation between different materials in submicron-scale waveguides for the sake of making others optical devices and the use of low-loss transmission.
In this paper, we combine III-V materials with quantum well and silicon on insulator (SOI) by wafer bonding. Through building quantum well and silicon to be an active layer, we make hybrid nanoscale waveguides and use dry etch with CF4/O2 mixture to achieve selective and clean waveguide processing for mode confined structures. We bond III-V materials and SOI with diluted BCB. In III-V waveguide, we design tapered structure to achieve reflective index matching between III-V waveguide and silicon waveguide for resonant coupling. We input light into silicon waveguide and successfully observe the mode field coupled to III-V waveguide, achieving the connection of layer-to-layer.
目次 Table of Contents
論文審定書...........................i
致謝 ...........................ii
摘要 ...........................iii
Abstract...........................iv
目錄...........................v
圖次...........................vii
表次...........................x
第一章 緒論...........................1
1-1 前言...........................1
1-2 研究動機...........................1
1-3 異質整合、光模轉換器、選擇性乾式蝕刻之技術...........................3
1-3-1 晶圓異質整合技術...........................3
1-3-2 光模轉換器...........................5
1-3-3 選擇性乾式蝕刻技術(Selective Dry Etch Technology)...........................6
1-4 研究目的與步驟...........................7
1-5 論文架構...........................8
第二章 異質整合元件/光模轉換器/選擇性乾式蝕刻之技術...........................9
2-1 異質整合之光電元件...........................9
2-2 異質整合之三維共振型光模轉換器...........................11
2-2-1 水平式光模轉換器...........................11
2-2-2 垂直式光模轉換器...........................12
2-2-3 水平垂直混合式光模轉換器...........................12
2-3 波導耦合理論(Couple Mode Theory)...........................13
2-4 共振光模轉換器原理...........................15
2-5 選擇性乾式蝕刻技術...........................17
第三章 異質整合元件設計與模擬...........................18
3-1 三五族材料折射率理論模型...........................18
3-2 光模轉換器...........................19
3-2-1 被動波導設計...........................19
3-2-2 主動波導設計...........................22
第四章 元件製程...........................26
4-1 磊晶結構...........................27
4-2 晶圓貼合技術...........................27
4-3 波導製作...........................32
4-3-1 三五族漸變式波導定義...........................34
4-3-2 三五族主動波導蝕刻...........................35
4-3-3 矽被動波導蝕刻...........................36
4-4 BCB平坦化及電極製作...........................36
第五章 量測結果與討論...........................41
5-1 選擇性乾式蝕刻被動波導...........................41
5-2 遠場繞射角(Far-Field Angle)...........................42
5-3 波導損耗與耦合效率...........................45
5-4 結果與討論...........................46
參考文獻...........................48
參考文獻 References
1. S. W. Wei, and C. K. Neng, “Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV),” Nanoscale Research Letters, 12(1), 1-9(2017).
2. L.C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y-K. Chen, T. Conway, D. M. Gill, M. Grove, C-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
3. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. of Selected Topics in Quantum Electronics, 19(4), 6100117 (2013).
4. K. Kato, and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. of Selected Topics in Quantum Electronics, 6(1), 4-12 (2000).
5. V. Pangracious, Z. Marrakchi, and H. Mehrez, “Three-Dimensional Design Methodologies for Tree-based FPGA Architecture,” chap. 2, pp. 18 (2015).
6. G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon” (2014).
7. J. Bowers, “Hybrid III-V silicon Quantum dot and quantum well lasers” (2015).
8. T. Matsumoto, T. Kurahashi, K. Tanizawa, K. Suzuki, A. Uetake, K. Takabayashi, K. Ikeda, H. Kawashima, and S. Akiyama, “In-line optical amplification for Si waveguides on 1x8 splitter and selector by flip-chip bonded InP-SOAs,” Optical Fiber Communication Conf., Paper Th1C.1 (2016).
9. SEMICONDUCTORTODAY, semiconductor-today.com.
10. C. Wang, and T. Suga, “Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation,” J. Electrochem. Soc., 158(5), 525-529 (2011).
11. G. Roelkens, L. Liu, J. Brouckaert, J. Van Campenhout, F. Van Laere, D. Van Thourhout, and R. Baets, “Wafer Bonding and Heterogeneous Integration: III-V/Silicon Photonics,” in ECIO 08, WeE1.
12. Q. Hu, B. S Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L Reno, “Resonant-phonon-assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol. 20, S228-S236 (2005).
13. Y. De Koninck, F. Raineri, A. Bazin, R. Raj, G. Roelkens, and R. Baets, “Demonstration of a novel single-mode hybrid silicon microlaser,” in Proc. IEEE IPC, pp. 1-2 (2012).
14. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Optics Letters, 38(24) (2013).
15. M. Galarza, D. Van Thourhout, R. Baets, and M. Lopez-Amo, “Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration,” Optics Express, 16(12), pp. 8350-8358 (2008).
16. Plummer, M. Deal and P. Griffin, “Silicon VLSI Technology: Fundamentals, Practice and Modeling,” (2000).
17. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AIGaInAs-silicon evanescent laser,” Opt. Express, 14(20), 9203-9210 (2006).
18. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D, Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., 24(1), pp. 76-78 (2012).
19. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto Silicon-on-insulator waveguide circuits,” Opt. Exp., 13(25), pp. 10102-10108 (2005).
20. Y. Wang, Y. Wei, Y. Huang, Y. Tu, D. Ng, C. Lee, Y. Zheng, B. Liu, and S. T. Ho, “Silicon/III-V laser with super-compact diffraction grating for WDM application in electronic-photonic integrated circuits,” Opt. Express, 19(3), 2006-2013 (2011).
21. I. Moerman, P. P. Van Daele, and P. M. Daneester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Topics Quantum Electron, 3(6), pp. 1308-1320 (1997).
22. S. L. Chuang, “Physics of optoelectronic devices,” Wiley (1995).
23. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2-The effect of oxygen additions to CF4 plasmas,” (1978).
24. B. E. E. Kastenmeier, P. J. Matsuo, G. S. Oehrlein, R. E. Ellefson, and L. C. Frees, “Surface etching mechanism of silicon nitride in fluorine and nitric oxide containing plasmas,” (2000).
25. M. Guden, and J. Piprek, “Material parameters of quanternary III-V semiconductors for multilayer mirrors at 1.55um wavelength,” Modelling Simul. Mater. Sci. Eng., 4, pp. 349-364 (1996).
26. D. W. Jenkins, “Optical properties of AlxGal-xAs alloys,” Physical Rev. B, 39, pp. 12345-12352 (1988).
27. M. A. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Massachusetts Institute of Technology (2008).
28. S. L. Chuang, “Physics of optoelectronic devices,” Wiley (1995).
29. S. Keyvaninia, M. Muneeb, S. Stankovic, Rene’ van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Matter. Exp., 3(1), pp. 35-46 (2013).
30. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photo. Rev., 1999, pp. 1-29 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.226.141.207
論文開放下載的時間是 校外不公開

Your IP address is 34.226.141.207
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code