Responsive image
博碩士論文 etd-0826105-151612 詳細資訊
Title page for etd-0826105-151612
論文名稱
Title
第一型類胰島素生長因子在大鼠孤立束核之心臟血管作用
The cardiovascular effects of insulin-like growth factor-1 in the nucleus tractus solitarii of rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-26
繳交日期
Date of Submission
2005-08-26
關鍵字
Keywords
孤立束核、第一型類胰島素生長因子
NTS, WKY, IGF-1, SHR
統計
Statistics
本論文已被瀏覽 5636 次,被下載 8
The thesis/dissertation has been browsed 5636 times, has been downloaded 8 times.
中文摘要
第一型類胰島素生長因子(IGF-1)被認定為與動脈高血壓形成有關的影響因子,不僅在於具有促生長的作用,而且具有調節血管樞紐的能力。許多研究報告指出,第一型類胰島素生長因子在心血管系統中對於血壓的調節扮演很重要的角色。我們實驗室過去曾經報導,將胰島素微量注射到大鼠的孤立束核(NTS)內,產生血壓下降及心搏舒緩現象,另外也會造成PI3K下游的蛋白激
Abstract
Insulin-like growth factor 1 (IGF-1) was considered as a factor potentially involved in arterial hypertension because of its effects on vascular tone. Several studies have suggested that IGF-1 might play an important role in the cardiovascular system for regulation of blood pressure. Previously, microinjection of insulin into the NTS of rats preceded prominent depressor and bradycardic and activates the PI3K downstream Akt. The aims of this study was to compare the cardiovascular responses induced by IGF-1 and to investigate the mechanisms of IGF-1induced signaling pathway in the nucleus tractus solitarius (NTS) between spontaneously hypertensive rat (SHR) and normotensive Wistar-Kyoto rat (WKY) at 8/16 weeks old. The results indicate that microinjection of IGF-1 into the NTS of WKY and SHR produced dramatically depressor and bradycardic effects. The cardiovascular effects evoked by IGF-1 are less in SHR than WKY rats. The defect in IGF-1 vascular action is also present in young spontaneously hypertensive rats (age 8 weeks). Pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 significantly attenuated the responses evoked by microinjection of IGF-1 in both SHR and WKY at 8/16 weeks old. Moreover, mitogen-activated protein kinase kinase (p44/p42MAPK) inhibitor PD98059 administration attenuated the cardiovascular effects of IGF-1 in WKY at 8/16 weeks old but had no effect in SHR at age matched.
In conclusion, both IGF-1/PI3K and p44/p42MAPK signal transduction pathways are involved in controlling central cardiovascular effects in WKY, whereas PI3K but not p44/p42MAPK signaling pathway is involved in SHR. This different condition suggests that such insensitive pathway may play a causative role in the development of hypertension.
目次 Table of Contents
Contents
Chinese Abstract……………………………………………………………………. i
English Abstract……………………………………………………………………. iii
Contents…………………………………………………………………………….. v
List of tables………………………………………………………………………... viii
List of figures………………………………………………………………………. ix
Abbreviations………………………………………………………………………. xii

1 Introduction…………………………………………………………………… 1
1.1 IGF-1 and Insulin………………………………………………………………………. 1
1.2 IGF-1 receptor (IGF-1R)………………………………………………………………. 2
1.3 Phosphatidylinositol 3-kinase (PI3K)………………………………………………….. 3
1.4 Mitogen-Activated Protein Kinases (MAPK)………………………………………….. 5
1.5 IGF-1 signaling and central cardiovascular regulation………………..…..……...….… 5
1.6 Cardiovascular regulation of the nucleus tractus solitarii……………………..………. 7
1.7 Spontaneously hypertensive rats (SHR)……………………………………………….. 9
2 Specific Aims..............………………………………………………………… 12
3 Materials and Methods….……………………………………………….…… 14
3.1 Reagents and chemicals……………………………………………………….……… 14
3.2 Animals………………………………………………………………………………... 14
3.3 In vivo studies…………………………………………………………………………. 15
3.3.1 Experimental protocol…………………………………………...………………. 16
3.3.2 Microinjections of drugs………………………………………….……………... 16
3.4 In situ studies………………………………………………………………………….. 17
3.4.1 Immunohistochemisry (IHC)…..…………..………………………….…………. 17
3.5 Protein analysis………………...……………………………………………………... 18
3.5.1 Protein Purification……………………………………………………………... 19
3.5.2 Western blot analysis………………………………………….…….…………... 19
3.5.3 Quantitative analysis of Western blot……………………………….…………... 20
3.6 Statistical Analysis……………………………………………………….……………. 20
4 Results…………………………………………………………………….…… 22
4.1 The cardiovascular effects of IGF-1 microinjection into NTS……………………... 22
4.2 Localization and evaluation IGF-1R in the NTS of WKY and SHR ……………... 22
4.3 PI3K pathway and IGF-1-mediated cardiovascular effects in WKY rats……….... 23
4.3.1 Attenuation of PI3K inhibitor on IGF-1-mediated cardiovascular effects in the NTS of WKY rats……………………..……………….......................................... 23
4.3.2 Induction of Akt phosphorylation by IGF-1 injection into the NTS of WKY rats……................................................................................................................. 24
4.3.3 Attenuation of IGF-1 induced in situ AktSer473 phosphorylation by LY294002 in the NTS of WKY rats…………………………………………………………...... 25
4.4 PI3K pathway and IGF-1-mediated cardiovascular effects in SHR…….………… 26
4.4.1 Attenuation of PI3K inhibitor on IGF-1-mediated cardiovascular effects in the NTS of SHR……………..……………………………………………………….. 26
4.4.2 Induction of Akt phosphorylation by IGF-1 injection into the NTS of SHR ……. 26
4.4.3 Attenuation of IGF-1 induced in situ AktSer473 phosphorylation by LY294002 in the NTS of SHR………………………………………………………………….. 27
4.5 MAPK pathway and IGF-1-mediated cardiovascular effects in WKY rats……… 27
4.5.1 Attenuation of MAPK inhibitor on IGF-1-mediated cardiovascular effects in the NTS of WKY rats…………..………………………….......................................... 28
4.5.2 Induction of ERK1/2 phosphorylation by IGF-1 injection into the NTS of WKY rats……................................................................................................................. 28
4.5.3 Attenuation of IGF-1 induced in situ ERKThr202/Tyr204 phosphorylation by PD98059 in the NTS of WKY rats……………………………………………….. 29
4.6 MAPK pathway and IGF-1-mediated cardiovascular effects in SHR…………….. 30
4.6.1 Attenuation of MAPK inhibitor on IGF-1-mediated cardiovascular effects in the NTS of SHR ……………………………………………………………………... 30
4.6.2 Induction of ERK1/2 phosphorylation by IGF-1 injection into the NTS of SHR... 30
4.6.3 Attenuation of IGF-1 induced in situ ERKThr202/Tyr204 phosphorylation by PD98059 in the NTS of SHR…………………………………………………….. 31
5 Discussion………………………….………………………………………….. 33
6 Conclusion…………………………………………………………………….. 40
7 Future perspectives…………………………………………………………… 41
8 References……………………………………………………………………... 43
9 Appendix………………………………………………………………………. 90
參考文獻 References
Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., and Saltiel, A. R. (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270, 27489-27494.
Anderson, M. F., Aberg, M. A., Nilsson, M., Eriksson, P. S., Carro, E., Trejo, J. L., Busiguina, S., Torres-Aleman, I., and Nunez, A. (2002). Insulin-like growth factor-I and neurogenesis in the adult mammalian brain.Circulating insulin-like growth factor I mediates effects of exercise on the brain. Brain Res Dev Brain Res 134, 115-122.
Andresen, M. C., and Kunze, D. L. (1994). Nucleus tractus solitarius--gateway to neural circulatory control. Annu Rev Physiol 56, 93-116.
Anlar, B., Sullivan, K. A., and Feldman, E. L. (1999). Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31, 120-125.
Blundell, T. L., and Humbel, R. E. (1980). Hormone families: pancreatic hormones and homologous growth factors. Nature 287, 781-787.
Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362.
Brody, M. J., O'Neill, T. P., and Porter, J. P. (1984). Role of central catecholaminergic systems in pathogenesis and treatment of hypertension. J Cardiovasc Pharmacol 6 Suppl 5, S727-741.
Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Cardona-Gomez, G. P., Mendez, P., DonCarlos, L. L., Azcoitia, I., and Garcia-Segura, L. M. (2002). Interactions of estrogen and insulin-like growth factor-I in the brain: molecular mechanisms and functional implications. J Steroid Biochem Mol Biol 83, 211-217.
Carro, E., Trejo, J. L., Busiguina, S., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21, 5678-5684.
Castro-Alamancos, M. A., Arevalo, M. A., and Torres-Aleman, I. (1996). Involvement of protein kinase C and nitric oxide in the modulation by insulin-like growth factor-I of glutamate-induced GABA release in the cerebellum. Neuroscience 70, 843-847.
Chan, S. J., Cao, Q. P., and Steiner, D. F. (1990). Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proc Natl Acad Sci U S A 87, 9319-9323.
Chung, Y. H., Joo, K. M., Shin, C. M., Lee, Y. J., Shin, D. H., Lee, K. H., and Cha, C. I. (2003). Immunohistochemical study on the distribution of insulin-like growth factor I (IGF-I) receptor in the central nervous system of SOD1(G93A) mutant transgenic mice. Brain Res 994, 253-259.
Collett-Solberg, P. F., and Cohen, P. (1996). The role of the insulin-like growth factor binding proteins and the IGFBP proteases in modulating IGF action. Endocrinol Metab Clin North Am 25, 591-614.
Copeland, K. C., and Nair, K. S. (1994). Recombinant human insulin-like growth factor-I increases forearm blood flow. J Clin Endocrinol Metab 79, 230-232.
Daftary, S. S., and Gore, A. C. (2005). IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Exp Biol Med (Maywood) 230, 292-306.
Dampney, R. A. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74, 323-364.
Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241.
de Pablo, F., and de la Rosa, E. J. (1995). The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18, 143-150.
Deak, J. C., Cross, J. V., Lewis, M., Qian, Y., Parrott, L. A., Distelhorst, C. W., and Templeton, D. J. (1998). Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MAPKK1. Proc Natl Acad Sci U S A 95, 5595-5600.
Delafontaine, P. (1995). Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovasc Res 30, 825-834.
Donohue, T. J., Dworkin, L. D., Lango, M. N., Fliegner, K., Lango, R. P., Benstein, J. A., Slater, W. R., and Catanese, V. M. (1994). Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation 89, 799-809.
Downward, J. (1998). Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10, 262-267.
Duanmu, Z., Lapanowski, K., and Dunbar, J. C. (1997). Insulin-like growth factor-I decreases sympathetic nerve activity: the effect is modulated by glycemic status. Proc Soc Exp Biol Med 216, 93-97.
Duanmu, Z., Scislo, T., and Dunbar, J. C. (1999). Glycemic modulation of insulin/IGF-1 mediated skeletal muscle blood following sympathetic denervation in normal rats. Clin Exp Hypertens 21, 1239-1255.
Ford, R., Lu, H., Duanmu, Z., Scislo, T., and Dunbar, J. C. (2000). The effect of the removal of the area postrema on insulin and IGF-1-induced cardiovascular and sympathetic nervous responses. Int J Exp Diabetes Res 1, 59-67.
Fukuda, Y., Sato, A., and Trzebski, A. (1987). Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats. J Auton Nerv Syst 19, 1-11.
Garrett, T. P., McKern, N. M., Lou, M., Frenkel, M. J., Bentley, J. D., Lovrecz, G. O., Elleman, T. C., Cosgrove, L. J., and Ward, C. W. (1998). Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394, 395-399.
Grover, A., Padginton, C., Wilson, M. F., Sung, B. H., Izzo, J. L., Jr., and Dandona, P. (1995). Insulin attenuates norepinephrine-induced venoconstriction. An ultrasonographic study. Hypertension 25, 779-784.
Guron, G., Friberg, P., Wickman, A., Brantsing, C., Gabrielsson, B., and Isgaard, J. (1996). Cardiac insulin-like growth factor I and growth hormone receptor expression in renal hypertension. Hypertension 27, 636-642.
Guyton, A. C., Cowley, A. W., Jr., Coleman, T. G., DeClue, J. W., Norman, R. A., and Manning, R. D. (1974). Hypertension: a disease of abnormal circulatory control. Chest 65, 328-338.
Gwyn, D. G., Leslie, R. A., and Hopkins, D. A. (1985). Observations on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel monkey. J Comp Neurol 239, 163-175.
Haeusler, G., Finch, L., and Thoenen, H. (1972). Central adrenergic neurones and the initiation and development of experimental hypertension. Experientia 28, 1200-1203.
Hasdai, D., Rizza, R. A., Holmes, D. R., Jr., Richardson, D. M., Cohen, P., and Lerman, A. (1998). Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. Hypertension 32, 228-234.
Holzenberger, M., Lapointe, F., and Ayer-LeLievre, C. (2000). Expression of insulin-like growth factor-I (IGF-I) and IGF-II in the avian brain: relationship of in situ hybridization patterns with IGF type 1 receptor expression. Int J Dev Neurosci 18, 69-82.
Huang, H. N., Lu, P. J., Lo, W. C., Lin, C. H., Hsiao, M., and Tseng, C. J. (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation 110, 2476-2483.
Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., and Fishman, M. C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239-242.
Ibarra, C., Estrada, M., Carrasco, L., Chiong, M., Liberona, J. L., Cardenas, C., Diaz-Araya, G., Jaimovich, E., and Lavandero, S. (2004). Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 279, 7554-7565.
Inishi, Y., Katoh, T., Okuda, T., Yamaguchi, T., and Kurokawa, K. (1997). Modulation of renal hemodynamics by IGF-1 is absent in spontaneously hypertensive rats. Kidney Int 52, 165-170.
Iriuchijima, J., Numao, Y., and Suga, H. (1975). Effect of increasing age on hemodynamics of spontaneously hypertensive rats. Jpn Heart J 16, 257-264.
Isenovic, E., Muniyappa, R., Milivojevic, N., Rao, Y., and Sowers, J. R. (2001). Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity. Biochem Biophys Res Commun 285, 954-958.
Isenovic, E. R., Divald, A., Milivojevic, N., Grgurevic, T., Fisher, S. E., and Sowers, J. R. (2003). Interactive effects of insulin-like growth factor-1 and beta-estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells. Metabolism 52, 482-487.
Isenovic, E. R., Meng, Y., Divald, A., Milivojevic, N., and Sowers, J. R. (2002). Role of phosphatidylinositol 3-kinase/Akt pathway in angiotensin II and insulin-like growth factor-1 modulation of nitric oxide synthase in vascular smooth muscle cells. Endocrine 19, 287-292.
Izhar, U., Hasdai, D., Richardson, D. M., Cohen, P., and Lerman, A. (2000). Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro. Coron Artery Dis 11, 69-76.
Jones, J. I., and Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16, 3-34.
Judy, W. V., Watanabe, A. M., Murphy, W. R., Aprison, B. S., and Yu, P. L. (1979). Sympathetic nerve activity and blood pressure in normotensive backcross rats genetically related to the spontaneously hypertensive rat. Hypertension 1, 598-604.
Karagiannis, S. N., King, R. H., and Thomas, P. K. (1997). Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. J Anat 191 ( Pt 3), 431-440.
Khan, A. S., Sane, D. C., Wannenburg, T., and Sonntag, W. E. (2002). Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 54, 25-35.
Khorsandi, M. J., Fagin, J. A., Giannella-Neto, D., Forrester, J. S., and Cercek, B. (1992). Regulation of insulin-like growth factor-I and its receptor in rat aorta after balloon denudation. Evidence for local bioactivity. J Clin Invest 90, 1926-1931.
Kopp, U. C., and Buckley-Bleiler, R. L. (1989). Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension 14, 445-452.
Kumada, M., Terui, N., and Kuwaki, T. (1990). Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog Neurobiol 35, 331-361.
Kwon, S., Lee, W. J., Fang, L. H., Kim, B., and Ahn, H. Y. (2003). Mitogen-activated protein kinases partially regulate endothelin-1-induced contractions through a myosin light chain phosphorylation-independent pathway. J Vet Med Sci 65, 225-230.
Lembo, G., Rockman, H. A., Hunter, J. J., Steinmetz, H., Koch, W. J., Ma, L., Prinz, M. P., Ross, J., Jr., Chien, K. R., and Powell-Braxton, L. (1996). Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest 98, 2648-2655.
Lin, H. C., Wan, F. J., Kang, B. H., Wu, C. C., and Tseng, C. J. (1999). Systemic administration of lipopolysaccharide induces release of nitric oxide and glutamate and c-fos expression in the nucleus tractus solitarii of rats. Hypertension 33, 1218-1224.
Lipski, J., Bellingham, M. C., West, M. J., and Pilowsky, P. (1988). Limitations of the technique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS. J Neurosci Methods 26, 169-179.
Lo, W. C., Jan, C. R., Chiang, H. T., and Tseng, C. J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension 35, 1253-1257.
Lo, W. C., Jan, C. R., Wu, S. N., and Tseng, C. J. (1998). Cardiovascular effects of nitric oxide and adenosine in the nucleus tractus solitarii of rats. Hypertension 32, 1034-1038.
Lo, W. C., Lin, H. C., Ger, L. P., Tung, C. S., and Tseng, C. J. (1997). Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension 30, 1499-1503.
Lupien, S. B., Bluhm, E. J., and Ishii, D. N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res 74, 512-523.
McCallum, R. W., Hamilton, C. A., Graham, D., Jardine, E., Connell, J. M., and Dominiczak, A. F. (2005). Vascular responses to IGF-I and insulin are impaired in aortae of hypertensive rats. J Hypertens 23, 351-358.
Menetrey, D., and Basbaum, A. I. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255, 439-450.
Mohr, S., McCormick, T. S., and Lapetina, E. G. (1998). Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors: dichotomous apoptotic response independent of caspase 3 and reversal by the mitogen-activated protein kinase kinase (MAPK) inhibitor PD 098059. Proc Natl Acad Sci U S A 95, 5045-5050.
Mosqueda-Garcia, R., Tseng, C. J., Appalsamy, M., Beck, C., and Robertson, D. (1991). Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18, 494-502.
Mosqueda-Garcia, R., Tseng, C. J., Appalsamy, M., and Robertson, D. (1990). Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. J Pharmacol Exp Ther 255, 374-381.
Myers, M. G., Jr., Grammer, T. C., Wang, L. M., Sun, X. J., Pierce, J. H., Blenis, J., and White, M. F. (1994). Insulin receptor substrate-1 mediates phosphatidylinositol 3'-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J Biol Chem 269, 28783-28789.
Nolan, B. P., Senechal, P., Waqar, S., Myers, J., Standley, C. A., and Standley, P. R. (2003). Altered insulin-like growth factor-1 and nitric oxide sensitivities in hypertension contribute to vascular hyperplasia. Am J Hypertens 16, 393-400.
Oh, C. D., and Chun, J. S. (2003). Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J Biol Chem 278, 36563-36571.
Okamoto, K., and Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27, 282-293.
O'Kusky, J. R., Ye, P., and D'Ercole, A. J. (2000). Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 20, 8435-8442.
Pan, W., and Kastin, A. J. (2000). Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology 72, 171-178.
Reinhardt, R. R., and Bondy, C. A. (1994). Insulin-like growth factors cross the blood-brain barrier. Endocrinology 135, 1753-1761.
Reis, D. J. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70, III31-45.
Ren, J., Sowers, J. R., Natavio, M., and Brown, R. A. (1999). Influence of age on inotropic response to insulin and insulin-like growth factor I in spontaneously hypertensive rats: role of nitric oxide. Proc Soc Exp Biol Med 221, 46-52.
Richards, R. G., Walker, M. P., Sebastian, J., and DiAugustine, R. P. (1998). Insulin-like growth factor-1 (IGF-1) receptor-insulin receptor substrate complexes in the uterus. Altered signaling response to estradiol in the IGF-1(m/m) mouse. J Biol Chem 273, 11962-11969.
Rinderknecht, E., and Humbel, R. E. (1978). The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253, 2769-2776.
Rudic, R. D., Shesely, E. G., Maeda, N., Smithies, O., Segal, S. S., and Sessa, W. C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101, 731-736.
Salmon, W. D., Jr., and Daughaday, W. H. (1957). A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49, 825-836.
Sara, V. R., Carlsson-Skwirut, C., Bergman, T., Jornvall, H., Roberts, P. J., Crawford, M., Hakansson, L. N., Civalero, I., and Nordberg, A. (1989). Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochem Biophys Res Commun 165, 766-771.
Sasaoka, T., Ishiki, M., Wada, T., Hori, H., Hirai, H., Haruta, T., Ishihara, H., and Kobayashi, M. (2001). Tyrosine phosphorylation-dependent and -independent role of Shc in the regulation of IGF-1-induced mitogenesis and glycogen synthesis. Endocrinology 142, 5226-5235.
Sato, A., and Schmidt, R. F. (1973). Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53, 916-947.
Schwartz, M. W., Figlewicz, D. P., Baskin, D. G., Woods, S. C., and Porte, D., Jr. (1992). Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13, 387-414.
Seger, R., and Krebs, E. G. (1995). The MAPK signaling cascade. Faseb J 9, 726-735.
Sekizawa, S., Joad, J. P., and Bonham, A. C. (2003). Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii. J Physiol 552, 547-559.
Shesely, E. G., Maeda, N., Kim, H. S., Desai, K. M., Krege, J. H., Laubach, V. E., Sherman, P. A., Sessa, W. C., and Smithies, O. (1996). Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93, 13176-13181.
Sinski, M., Kowalczyk, P., Stolarczyk, A., Sawionek, L., and Przybylski, J. (2002). Influence of the stimulation of carotid body chemoreceptors on the gastric mucosal blood flow in artificially ventilated and spontaneously breathing rats. J Physiol Pharmacol 53, 359-369.
Sowers, J. R. (1997). Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 29, 691-699.
Spyer, K. M., Lambert, J. H., and Thomas, T. (1997). Central nervous system control of cardiovascular function: neural mechanisms and novel modulators. Clin Exp Pharmacol Physiol 24, 743-747.
Touyz, R. M., El Mabrouk, M., He, G., Wu, X. H., and Schiffrin, E. L. (1999). Mitogen-activated protein/extracellular signal-regulated kinase inhibition attenuates angiotensin II-mediated signaling and contraction in spontaneously hypertensive rat vascular smooth muscle cells. Circ Res 84, 505-515.
Trejo, J. L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21, 1628-1634.
Trzebski, A. (1992). Arterial chemoreceptor reflex and hypertension. Hypertension 19, 562-566.
Tseng, C. J., Appalsamy, M., Robertson, D., and Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 265, 1511-1518.
Tseng, C. J., Biaggioni, I., Appalsamy, M., and Robertson, D. (1988). Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11, 191-197.
Tseng, C. J., Chou, L. L., Ger, L. P., and Tung, C. S. (1994). Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. J Pharmacol Exp Ther 268, 558-564.
Tseng, C. J., Ger, L. P., and Tung, C. S. (1991). Interrelation between alpha 2-adrenoreceptor system and neuropeptide Y in rat nucleus tractus solitarii. Proc Natl Sci Counc Repub China B 15, 86-91.
Tseng, C. J., Liu, H. Y., Lin, H. C., Ger, L. P., Tung, C. S., and Yen, M. H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27, 36-42.
Tseng, C. J., Mosqueda-Garcia, R., Appalsamy, M., and Robertson, D. (1989). Cardiovascular effects of neuropeptide Y in rat brainstem nuclei. Circ Res 64, 55-61.
Tsukahara, H., Gordienko, D. V., Tonshoff, B., Gelato, M. C., and Goligorsky, M. S. (1994). Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int 45, 598-604.
Ullrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., Chen, E., and et al. (1986). Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J 5, 2503-2512.
Vecchione, C., Colella, S., Fratta, L., Gentile, M. T., Selvetella, G., Frati, G., Trimarco, B., and Lembo, G. (2001). Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension 37, 1480-1485.
Vlahos, C. J., Matter, W. F., Hui, K. Y., and Brown, R. F. (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269, 5241-5248.
Walsh, M. F., Barazi, M., Pete, G., Muniyappa, R., Dunbar, J. C., and Sowers, J. R. (1996). Insulin-like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide. Endocrinology 137, 1798-1803.
Walter, H. J., Berry, M., Hill, D. J., and Logan, A. (1997). Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain. Endocrinology 138, 3024-3034.
Wang, B., and Hu, C. H. (1993). [Effect of electrical stimulation of hyperstriatum on nucleus dorsalis intermedius ventralis anterior thalami somatosensory units in pigeon]. Sheng Li Xue Bao 45, 172-177.
Wiedmann, M., Wang, X., Tang, X., Han, M., Li, M., and Mao, Z. (2005). PI3K/Akt-dependent regulation of the transcription factor myocyte enhancer factor-2 in insulin-like growth factor-1- and membrane depolarization-mediated survival of cerebellar granule neurons. J Neurosci Res 81, 226-234.
Yau, L., Lukes, H., McDiarmid, H., Werner, J., and Zahradka, P. (1999). Insulin-like growth factor-I (IGF-I)-dependent activation of pp42/44 mitogen-activated protein kinase occurs independently of IGF-I receptor kinase activation and IRS-1 tyrosine phosphorylation. Eur J Biochem 266, 1147-1157.
Zakova, L., Brynda, J., Au-Alvarez, O., Dodson, E. J., Dodson, G. G., Whittingham, J. L., and Brzozowski, A. M. (2004). Toward the insulin-IGF-I intermediate structures: functional and structural properties of the [TyrB25NMePheB26] insulin mutant. Biochemistry 43, 16293-16300.
Zeng, G., Nystrom, F. H., Ravichandran, L. V., Cong, L. N., Kirby, M., Mostowski, H., and Quon, M. J. (2000). Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101, 1539-1545.
Zeng, Z. H., Luo, B. H., Gao, Y. J., Su, C. J., He, C. C., Yi, J. J., Li, N., and Lee, R. M. (2004). Control of vascular changes by renin-angiotensin-aldosterone system in salt-sensitive hypertension. Eur J Pharmacol 503, 129-133.
Zhang, Q., Liu, S. H., Erikson, M., Lewis, M., and Unemori, E. (2002). Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J Cell Biochem 85, 536-544.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.72.78
論文開放下載的時間是 校外不公開

Your IP address is 3.139.72.78
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code