Responsive image
博碩士論文 etd-0826105-184354 詳細資訊
Title page for etd-0826105-184354
論文名稱
Title
以藥物或基因抑制PI3K/Akt之活性來治療惡性腦瘤
Pharmacological and Genetic Inhibitions of PI3K/Akt Activity to Treat Malignant Brain Tumors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-26
繳交日期
Date of Submission
2005-08-26
關鍵字
Keywords
惡性腦瘤、放射治療、PI3K、AKT
Radiation Therapy, AKT, PI3K, Glioma
統計
Statistics
本論文已被瀏覽 5641 次,被下載 0
The thesis/dissertation has been browsed 5641 times, has been downloaded 0 times.
中文摘要
神經膠質瘤是一種非常高度惡性的中樞神經腫瘤,而且放射治療與化學治療都能有效的治療。近幾年的證據指出,phosphoinositide 3-kinase/Akt的訊息傳遞路徑在對抗傳統治療上扮演了一個很重要的因素。在此我們測量利用藥物或者基因調控來抑制PI3K/Akt訊息傳遞,造成了神經膠質瘤細胞的放射敏感性增強。我們發現實驗室的12株神經膠質瘤細胞株,有6株的Akt有過度活化的現象,其中大部分是因為PTEN的去活化(可能是失去作用的突變造成)而不是PIK3CA的增強活性的突變造成。U87和U373兩株神經膠質瘤細胞株都有PTEN的突變伴隨著Akt在ser473上的高度磷酸化,我們利用LY294002來抑制PI3K並且將細胞照射0、2.5、5、7.5四個劑量的放射線來測量放射敏感性。結果顯示LY294002可以抑制神經膠質瘤細胞的Akt活性,細胞的存活率也隨著放射線劑量而有更明顯的降低。我們又利用帶有dominant-negative Akt或PTEN 基因的腺病毒來感染D54MG、U87和U373等神經膠質瘤細胞發現他也會有類似LY294002的結果。接著我們使用PDK1跟mTOR的抑制劑來試驗放射敏感性測試,但結果發現兩種抑制劑都沒有辦法造成神經膠質瘤細胞的放射敏感性增強。
神經膠質瘤的轉移與惡性程度有著極大的關聯。 最近第一型的類胰島素生長因子被發現會經由PI3K/Akt的訊息傳遞路徑調控造成細胞的入侵能力變強。因此我們使用LY294002來看看神經膠質瘤細胞的轉移能力的影響。細胞轉移分成入侵跟平移,我是用Boyden chamber來偵測細胞的入侵能力,利用wound colonization來估計細胞的平移能力。而結果是顯示利用LY294002抑制Akt活化可以造成大部分神經膠質瘤的入侵能力下降。我們也又利用帶有PTEN或dnAkt的腺病毒來證明一次這個結果。其中PTEN腺病毒抑制細胞入侵的效果非常好。後來我們假設神經膠質細胞瘤的轉移與放射敏感性主要是經由PI3K-PDK1-Akt-mTOR這條訊息傳遞路徑造成的,所以我們再來就用PDK1和mTOR的抑制劑來試試看能不能抑制神經膠質瘤細胞的轉移現象。不幸地,這兩種抑制劑抑制腦瘤細胞入侵的效果很有限。總而言之,我們的結果顯示使用基因或藥物來抑制PI3K/Akt都是非常適合來造成腦瘤細胞的放射敏感性增強及減少腦瘤細胞的入侵能力,雖然腦瘤的放射敏感性與入侵能力的調控也許還有其他的訊息調控機制來影響它。
Abstract
Gliomblastoma is a highly malignant tumor of the central nervous system that is resistant to radiation and chemotherapy. Evidences accumulated over recent years have indicated the phosphoinositide 3-kinase/Akt signal transduction pathway as one of the major factors implicated in cancer resistance to conventional therapies. In this study we determined whether inhibition of PI3K/Akt signal pathway through pharmacological and/or genetic manipulation could enhance radiation sensitivity in glioma cells. Our results showed 6 of 12 glioma cell lines with activated Akt mostly due to reciprocal down-regulation of PTEN activity (loss-of-function mutations) but not by PIK3CA gain-of-function mutations. U87 and U373 glioma cell lines with PTEN mutation showing strong Akt Ser473 phopshorylation were treated with PI3K inhibitor LY294002 and irradiated with 0, 2.5, 5 and 7.5 Gy of radiation dosages. The results showed LY294002 inhibited Akt actvation in the glioma cells and decreased clonogenic survival in a radiation dose-dependent manner. Expression of dominant-negative Akt and PTEN through adenovirus mediated gene delivery in U87 and U373 glioma cells sensitized tumor cells to radiation treatment. Furthermore, PDK1 and mTOR inhibitors were also used on radiation sensitivity test. But both inhibitors had no radiosensitization in glioma cells.
Glioma invasion was linked to advanced tumor stages. Recently, Type 1 insulin-like growth factor regulates tumor invasion have been showed to be mediated through the PI3K/Akt signaling pathway. In this study, we treated glioma cells with LY294002 to analyze its effects on invasion and migration potentials of the tumor cells. The results showed LY294002 inhibited both abilities in most glioma cell lines in vitro. In addition we used adv-PTEN and adv-dnAkt to confirm these results. Adv-PTEN performed dramatic decrease in glioma cell invasion potentials. Furthermore, we investigated whehter PI3K downstream PDK1, and mTOR involved in tumor cell invasion. We used PDK1 and mTOR inhibitors in glioma and determined their effects on invasion by Boyden chamber assay. Unfortunately, both of inhibitors had only limited inhibition on glioma invasion. Take together, our results indicate the feasibility of using PI3K/Akt inhibiting genetic and pharmacological agents to induce glioma cells to become more sensitive to radiation treatment and reduced invasion potentials. However, glioma radiosensitization and invasion may also be regulated by other signaling pathway.
目次 Table of Contents
Contents 1
Abbreviations 2
中文摘要 3
Abstract 5
General Introduction
1.1 Backgrounds and Significances 6
1.2 Specific Aims 22
Materials and Methods 24
Results 35
Figures 48
Discussion 86
Future Perspectives 94
References 97
Appendix 117
參考文獻 References
Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., Tang, Y., DeFrances, J., Stover, E., Weissleder, R., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269-277.

Backlund, L. M., Nilsson, B. R., Goike, H. M., Schmidt, E. E., Liu, L., Ichimura, K., and Collins, V. P. (2003). Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clin Cancer Res 9, 4151-4158.

Barnes, D. M., and Gillett, C. E. (1998). Cyclin D1 in breast cancer. Breast Cancer Res Treat 52, 1-15.

Bellacosa, A., Testa, J. R., Staal, S. P., and Tsichlis, P. N. (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274-277.

Bianco, R., Shin, I., Ritter, C. A., Yakes, F. M., Basso, A., Rosen, N., Tsurutani, J., Dennis, P. A., Mills, G. B., and Arteaga, C. L. (2003). Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812-2822.

Bigner, S. H., Matthews, M. R., Rasheed, B. K., Wiltshire, R. N., Friedman, H. S., Friedman, A. H., Stenzel, T. T., Dawes, D. M., McLendon, R. E., and Bigner, D. D. (1999). Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol 155, 375-386.

Burgering, B. M., and Medema, R. H. (2003). Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73, 689-701.

Cai, X. M., Tao, B. B., Wang, L. Y., Liang, Y. L., Jin, J. W., Yang, Y., Hu, Y. L., and Zha, X. L. (2005). Protein phosphatase activity of PTEN inhibited the invasion of glioma cells with epidermal growth factor receptor mutation type III expression. Int J Cancer.

Cairncross, J. G., Ueki, K., Zlatescu, M. C., Lisle, D. K., Finkelstein, D. M., Hammond, R. R., Silver, J. S., Stark, P. C., Macdonald, D. R., Ino, Y., et al. (1998). Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90, 1473-1479.

Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science 296, 1655-1657.

Cantley, L. C., and Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96, 4240-4245.

Cary, L. A., and Guan, J. L. (1999). Focal adhesion kinase in integrin-mediated signaling. Front Biosci 4, D102-113.

Chakravarti, A., Chakladar, A., Delaney, M. A., Latham, D. E., and Loeffler, J. S. (2002). The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62, 4307-4315.

Chakravarti, A., Zhai, G., Suzuki, Y., Sarkesh, S., Black, P. M., Muzikansky, A., and Loeffler, J. S. (2004). The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22, 1926-1933.

Choe, G., Horvath, S., Cloughesy, T. F., Crosby, K., Seligson, D., Palotie, A., Inge, L., Smith, B. L., Sawyers, C. L., and Mischel, P. S. (2003). Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63, 2742-2746.

Contessa, J. N., Hampton, J., Lammering, G., Mikkelsen, R. B., Dent, P., Valerie, K., and Schmidt-Ullrich, R. K. (2002). Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene 21, 4032-4041.

Datta, S. R., Brunet, A., and Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes Dev 13, 2905-2927.

Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351, 95-105.

DeAngelis, L. M. (2001). Brain tumors. N Engl J Med 344, 114-123.

Devaux, B. C., O'Fallon, J. R., and Kelly, P. J. (1993). Resection, biopsy, and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy, and outcome. J Neurosurg 78, 767-775.

Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12, 3499-3511.

Dudkin, L., Dilling, M. B., Cheshire, P. J., Harwood, F. C., Hollingshead, M., Arbuck, S. G., Travis, R., Sausville, E. A., and Houghton, P. J. (2001). Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 7, 1758-1764.

Ermoian, R. P., Furniss, C. S., Lamborn, K. R., Basila, D., Berger, M. S., Gottschalk, A. R., Nicholas, M. K., Stokoe, D., and Haas-Kogan, D. A. (2002). Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8, 1100-1106.

Eshleman, J. S., Carlson, B. L., Mladek, A. C., Kastner, B. D., Shide, K. L., and Sarkaria, J. N. (2002). Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62, 7291-7297.

Fingar, D. C., Salama, S., Tsou, C., Harlow, E., and Blenis, J. (2002). Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 1472-1487.

Gupta, A. K., Cerniglia, G. J., Mick, R., Ahmed, M. S., Bakanauskas, V. J., Muschel, R. J., and McKenna, W. G. (2003). Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys 56, 846-853.

Hartmann, C., Bartels, G., Gehlhaar, C., Holtkamp, N., and von Deimling, A. (2005). PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol (Berl) 109, 639-642.

Hesselager, G., Uhrbom, L., Westermark, B., and Nister, M. (2003). Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model. Cancer Res 63, 4305-4309.

Hoang-Xuan, K., He, J., Huguet, S., Mokhtari, K., Marie, Y., Kujas, M., Leuraud, P., Capelle, L., Delattre, J. Y., Poirier, J., et al. (2001). Molecular heterogeneity of oligodendrogliomas suggests alternative pathways in tumor progression. Neurology 57, 1278-1281.

Hu, B., Guo, P., Fang, Q., Tao, H. Q., Wang, D., Nagane, M., Huang, H. J., Gunji, Y., Nishikawa, R., Alitalo, K., et al. (2003). Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci U S A 100, 8904-8909.

Kang, S., Bader, A. G., and Vogt, P. K. (2005). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102, 802-807.

Kennedy, S. G., Wagner, A. J., Conzen, S. D., Jordan, J., Bellacosa, A., Tsichlis, P. N., and Hay, N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11, 701-713.

Kleihues, P., and Sobin, L. H. (2000). World Health Organization classification of tumors. Cancer 88, 2887.

Knuefermann, C., Lu, Y., Liu, B., Jin, W., Liang, K., Wu, L., Schmidt, M., Mills, G. B., Mendelsohn, J., and Fan, Z. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22, 3205-3212.

Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J., and Parker, P. J. (1994). The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4, 798-806.

Komander, D., Kular, G. S., Bain, J., Elliott, M., Alessi, D. R., and Van Aalten, D. M. (2003). Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J 375, 255-262.

Kozikowski, A. P., Sun, H., Brognard, J., and Dennis, P. A. (2003). Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J Am Chem Soc 125, 1144-1145.

Kurose, K., Gilley, K., Matsumoto, S., Watson, P. H., Zhou, X. P., and Eng, C. (2002). Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32, 355-357.

Lal, A., Glazer, C. A., Martinson, H. M., Friedman, H. S., Archer, G. E., Sampson, J. H., and Riggins, G. J. (2002). Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62, 3335-3339.

Leibiger, B., Leibiger, I. B., Moede, T., Kemper, S., Kulkarni, R. N., Kahn, C. R., de Vargas, L. M., and Berggren, P. O. (2001). Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell 7, 559-570.

Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943-1947.

Liang, K., Lu, Y., Jin, W., Ang, K. K., Milas, L., and Fan, Z. (2003). Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2, 1113-1120.

Liu, A. X., Testa, J. R., Hamilton, T. C., Jove, R., Nicosia, S. V., and Cheng, J. Q. (1998). AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phosphatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res 58, 2973-2977.

Luo, J., Manning, B. D., and Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257-262.

Malik, S. N., Brattain, M., Ghosh, P. M., Troyer, D. A., Prihoda, T., Bedolla, R., and Kreisberg, J. I. (2002). Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8, 1168-1171.

Mayo, L. D., and Donner, D. B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98, 11598-11603.

Mueller, W., Mizoguchi, M., Silen, E., D'Amore, K., Nutt, C. L., and Louis, D. N. (2005). Mutations of the PIK3CA gene are rare in human glioblastoma. Acta Neuropathol (Berl) 109, 654-655.

Muller, S., Kunkel, P., Lamszus, K., Ulbricht, U., Lorente, G. A., Nelson, A. M., von Schack, D., Chin, D. J., Lohr, S. C., Westphal, M., and Melcher, T. (2003). A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22, 6661-6668.

Nakada, M., Niska, J. A., Miyamori, H., McDonough, W. S., Wu, J., Sato, H., and Berens, M. E. (2004). The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 64, 3179-3185.

Nakamura, J. L., Karlsson, A., Arvold, N. D., Gottschalk, A. R., Pieper, R. O., Stokoe, D., and Haas-Kogan, D. A. (2005). PKB/Akt mediates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. J Neurooncol 71, 215-222.

Neshat, M. S., Mellinghoff, I. K., Tran, C., Stiles, B., Thomas, G., Petersen, R., Frost, P., Gibbons, J. J., Wu, H., and Sawyers, C. L. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 98, 10314-10319.

Nicholson, K. M., and Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14, 381-395.

Nozaki, M., Tada, M., Kobayashi, H., Zhang, C. L., Sawamura, Y., Abe, H., Ishii, N., and Van Meir, E. G. (1999). Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro-oncol 1, 124-137.

Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82-85.

Pelengaris, S., Khan, M., and Evan, G. (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2, 764-776.

Podsypanina, K., Lee, R. T., Politis, C., Hennessy, I., Crane, A., Puc, J., Neshat, M., Wang, H., Yang, L., Gibbons, J., et al. (2001). An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci U S A 98, 10320-10325.

Radu, A., Neubauer, V., Akagi, T., Hanafusa, H., and Georgescu, M. M. (2003). PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23, 6139-6149.

Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709.

Romashkova, J. A., and Makarov, S. S. (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86-90.

Ruggero, D., and Pandolfi, P. P. (2003). Does the ribosome translate cancer? Nat Rev Cancer 3, 179-192.

Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554.

Sanson, M., Thillet, J., and Hoang-Xuan, K. (2004). Molecular changes in gliomas. Curr Opin Oncol 16, 607-613.

Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101.

Saunders, R. N., Metcalfe, M. S., and Nicholson, M. L. (2001). Rapamycin in transplantation: a review of the evidence. Kidney Int 59, 3-16.

Schmitt, C. A. (2003). Senescence, apoptosis and therapy--cutting the lifelines of cancer. Nat Rev Cancer 3, 286-295.

Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14, 2501-2514.

Sherr, C. J., and Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512.

Shingu, T., Yamada, K., Hara, N., Moritake, K., Osago, H., Terashima, M., Uemura, T., Yamasaki, T., and Tsuchiya, M. (2003). Synergistic augmentation of antimicrotubule agent-induced cytotoxicity by a phosphoinositide 3-kinase inhibitor in human malignant glioma cells. Cancer Res 63, 4044-4047.

Shinohara, E. T., Cao, C., Niermann, K., Mu, Y., Zeng, F., Hallahan, D. E., and Lu, B. (2005). Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene.

Skorski, T., Bellacosa, A., Nieborowska-Skorska, M., Majewski, M., Martinez, R., Choi, J. K., Trotta, R., Wlodarski, P., Perrotti, D., Chan, T. O., et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. Embo J 16, 6151-6161.

Song, S. W., Fuller, G. N., Khan, A., Kong, S., Shen, W., Taylor, E., Ramdas, L., Lang, F. F., and Zhang, W. (2003). IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proc Natl Acad Sci U S A 100, 13970-13975.

Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K., Lin, H., Ligon, A. H., Langford, L. A., Baumgard, M. L., Hattier, T., Davis, T., et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15, 356-362.

Su, J. D., Mayo, L. D., Donner, D. B., and Durden, D. L. (2003). PTEN and phosphatidylinositol 3'-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res 63, 3585-3592.

Sudarshan, S., Holman, D. H., Hyer, M. L., Voelkel-Johnson, C., Dong, J. Y., and Norris, J. S. (2005). In vitro efficacy of Fas ligand gene therapy for the treatment of bladder cancer. Cancer Gene Ther 12, 12-18.

Sugimoto, Y., Whitman, M., Cantley, L. C., and Erikson, R. L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci U S A 81, 2117-2121.

Surawicz, T. S., McCarthy, B. J., Kupelian, V., Jukich, P. J., Bruner, J. M., and Davis, F. G. (1999). Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro-oncol 1, 14-25.

Tamura, M., Gu, J., Takino, T., and Yamada, K. M. (1999). Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59, 442-449.

Tanno, S., Yanagawa, N., Habiro, A., Koizumi, K., Nakano, Y., Osanai, M., Mizukami, Y., Okumura, T., Testa, J. R., and Kohgo, Y. (2004). Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res 64, 3486-3490.

Thomas, C. C., Deak, M., Alessi, D. R., and van Aalten, D. M. (2002). High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12, 1256-1262.

Trotman, L. C., and Pandolfi, P. P. (2003). PTEN and p53: who will get the upper hand? Cancer Cell 3, 97-99.

Ueki, K., Nishikawa, R., Nakazato, Y., Hirose, T., Hirato, J., Funada, N., Fujimaki, T., Hojo, S., Kubo, O., Ide, T., et al. (2002). Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8, 196-201.

Ulbricht, U., Brockmann, M. A., Aigner, A., Eckerich, C., Muller, S., Fillbrandt, R., Westphal, M., and Lamszus, K. (2003). Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. J Neuropathol Exp Neurol 62, 1265-1275.

Viniegra, J. G., Martinez, N., Modirassari, P., Losa, J. H., Parada Cobo, C., Lobo, V. J., Luquero, C. I., Alvarez-Vallina, L., Ramon y Cajal, S., Rojas, J. M., and Sanchez-Prieto, R. (2005). Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem 280, 4029-4036.

Vivanco, I., and Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2, 489-501.

Wang, H., Shen, W., Huang, H., Hu, L., Ramdas, L., Zhou, Y. H., Liao, W. S., Fuller, G. N., and Zhang, W. (2003). Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63, 4315-4321.

Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L. (1988). Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644-646.

Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239-242.

Wong, A. J., Bigner, S. H., Bigner, D. D., Kinzler, K. W., Hamilton, S. R., and Vogelstein, B. (1987). Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A 84, 6899-6903.

Yang, J., Cron, P., Good, V. M., Thompson, V., Hemmings, B. A., and Barford, D. (2002). Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9, 940-944.

Zhou, B. P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M. C. (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973-982.

Zhu, J., Huang, J. W., Tseng, P. H., Yang, Y. T., Fowble, J., Shiau, C. W., Shaw, Y. J., Kulp, S. K., and Chen, C. S. (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64, 4309-4318.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.72.78
論文開放下載的時間是 校外不公開

Your IP address is 3.139.72.78
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code