Responsive image
博碩士論文 etd-0826108-140019 詳細資訊
Title page for etd-0826108-140019
論文名稱
Title
1/4及1/2波長共振模態之共振特性於固態微型共振器之研究
The Resonance Characteristics of Solidly Mounted Resonators with 1/4 and 1/2 λ Mode Configurations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-24
繳交日期
Date of Submission
2008-08-26
關鍵字
Keywords
氮化鋁、固態微型共振器、1/2及1/4波長
1/4 and 1/2 λ, AlN, SMR
統計
Statistics
本論文已被瀏覽 5670 次,被下載 0
The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times.
中文摘要
本論文致力於研究1/2及1/4波長固態微型共振器之元件製作及其特性分析;先利用射頻磁控濺鍍系統沈積氮化鋁壓電薄膜,並探討氮化鋁薄膜於不同濺鍍條件下的特性,以求得最佳濺鍍參數。接著利用雙靶交直流濺鍍系統,交替沈積不同對數且符合1/2及1/4波長SMR的反射層結構。最後搭配壓電層薄膜製作1/2及1/4波長SMR元件,並進行特性量測分析。
在壓電層結構的研究中發現,於249W、15mtorr、300℃、氮氣分率60%及軸心距0cm時可得一C軸優選取向的氮化鋁,經AFM分析表面粗糙度為1.783nm,而由XRD分析顯示FWHM=3.507°,以SEM觀察顯示其具有良好的結晶表面與柱狀結構。
由頻率響應分析得知,1/2波長SMR元件於4 對反射層時共振效果最佳,折返損失可達-57.23dB;1/4波長SMR元件於3 對反射層共振效果最佳,折返損失可達-30.68dB插入損失亦最小。Kt2值在1/2波長SMR元件中,最佳可達7.88%;Q值在1/4波長SMR元件中最佳可達4231.29。
Abstract
In this thesis, we emphasized on fabrication and anlysis of 1/4 and 1/2 λ mode solidly mounted resonators. First, the reactive RF magnetron sputter used to deposit the highly c-axis-oriented aluminum nitride (AlN) piezoelectric films under different parameters. The various c-axis tilt angle also used it by altering the distance between substrate and target to investigate the characteristics.
To accomplish the two modes of different pairs of Bragg reflector, the RF/DC sputter system is adopted alternating layers of quarter-wavelength Mo and SiO2 thin films by different sequence. Finally, depositing the highly c-axis-oriented AlN on reflectors to complete the 1/4 and 1/2 λ mode SMR.
The AlN thin film achieve a very low roughness of 1.783nm under AFM measurement, the FWHM of XRD(002) peak is 3.507°and SEM images also exhibit a highly oriented c-axis structure.
The optimum frequency responses of 1/2 λ mode SMR is obtained with return loss of -57.23dB at 4 pairs reflectors,which for 1/4 λ mode SMR is -30.68dB at 3 pairs. The maximum electromechanical coupling coefficient (Kt2) of 1/2 λ mode SMR is 7.88%, but the quality factor (Q) of 1/4 λ mode SMR is 4231.29.
目次 Table of Contents
目錄
摘要 I
目錄 III
圖表目錄 VI
第一章 前言 1
第二章 理論分析 6
2.1 AlN結構與特性 6
2.2 壓電理論 7
2.2.1 壓電效應 8
2.3 反應性射頻磁控濺鍍原理 9
2.3.1 輝光放電 9
2.3.2 磁控濺射 10
2.3.3 射頻濺射 11
2.3.4 反應性濺射 12
2.4 SMR的理論 13
2.4.1 SMR的特點 14
2.4.2 SMR的理論分析 14
2.4.3 λ/4與λ/2型態的SMR 17
2.5 SMR的參數性質 18
2.5.1 Kt2值測量 18
2.5.2 Q值測量 19
2.5.3 Frequency Of Merit (FOM)值定義 22
第三章 實驗 21
3.1 基板的清洗 21
3.2 交/直流濺鍍系統與薄膜沉積 22
3.3 射頻濺鍍系統與薄膜沉積 24
3.4 離軸式氮化鋁薄膜沉積 25
3.5 黃光微影製程 25
3.6 X光繞射(X-Ray Diffraction, XRD)分析 27
3.7 掃描式電子顯微鏡 27
3.8 原子力測量顯微鏡 28
3.9 SMR的製作 29
3.9.1 反射層的製作 29
3.9.2 壓電層的製作 31
3.10 元件之設定參數 32
3.11 元件電性測量 33
第四章 結果與討論 34
4.1 壓電層的探討 34
4.1.1 濺鍍功率之影響 35
4.1.2 濺鍍壓力之影響 36
4.1.3 基板溫度之影響 36
4.1.4 氮氣分率之影響 37
4.1.5基板與軸心距離之影響 38
4.1.6最佳氮化鋁壓電薄膜製備 41
4.2 反射層的探討 41
4.2.1 λ/2波長模態SMR反射層的探討 42
4.2.2 λ/4波長模態SMR反射層的探討 42
4.3 SMR元件的物性探討 43
4.3.1 λ/2 SMR元件的物性探討 43
4.3.2 λ/4 SMR元件的物性探討 44
4.4 SMR元件量測結果探討 44
4.4.1 λ/2 SMR元件量測結果探討 45
4.4.2 λ/4 SMR元件量測結果探討 45
4.4.3 λ/2 vs. λ/4 SMR元件量測結果比較 46
4.4.4 λ/2 vs. λ/4 SMR base on ZnO量測結果比較 48
第五章 結論 49
參考文獻 52
圖1-1 SMR元件上視圖與側視圖 59
圖1-2 體聲波元件的類型 60
圖2-1 反應性濺射之模型 61
圖2-2 AlN的晶體構造 62
圖2-3 壓電效應 63
圖2-4 直流輝光放電結構與電位分佈圖 64
圖2-5 平面型圓形磁控之結構圖 65
圖2-6 平面磁控放電之剖面圖 65
圖2-7 負載阻抗對層數的關係圖 66
圖2-8 波長為λ/2型態的SMR 67
圖2-9 阻抗(Zload)與反射層層數(n)之關係圖 68
圖2-10 波長為λ/4型態的SMR 69
圖3-1 直流磁控濺鍍系統 70
圖3-2 交直流磁控濺鍍系統操作流程圖 71
圖3-3 射頻磁控濺鍍系統 72
圖3-4 基板與軸心距離成長氮化鋁示意圖 73
圖3-5 舉離法流程圖 74
圖3-6 SMR製作流程圖 75
圖3-7 SMR 三道光罩圖 76
圖4-1 不同濺鍍功率下氮化鋁之SEM圖 77
圖4-2 不同濺鍍功率下氮化鋁之XRD圖 78
圖4-3 不同濺鍍壓力下氮化鋁之SEM圖 79
圖4-4 不同濺鍍壓力下氮化鋁之XRD 80
圖4-5 不同基板溫度下氮化鋁之SEM圖 81
圖4-6 不同基板溫度下氮化鋁之XRD圖 82
圖4-7 不同氮氣分率下氮化鋁之SEM圖 83
圖4-8 不同氮氣分率下氮化鋁之XRD圖 84
圖4-9 不同基板至軸心距離之SEM圖 85
圖4-10 不同基板至軸心距離之AFM圖 86
圖4-11 最佳濺鍍參數下之氮化鋁SEM圖 87
圖4-12 最佳濺鍍參數下之氮化鋁AFM圖 88
圖4-13 最佳濺鍍參數下之氮化鋁XRD圖 89
圖4-14 實際阻抗趨勢圖 90
圖4-15不同對數下二分之一波長模式反射層之SEM圖 91
圖4-16不同對數下二分之一波長模式反射層之AFM圖 92
圖4-17不同對數下四分之一波長模式反射層之SEM圖 93
圖4-18不同對數下四分之一波長模式反射層之AFM圖 94
圖4-19 不同對數下二分之一波長模式SMR元件之SEM圖 95
圖4-20 不同對數下二分之一波長模式SMR元件之AFM圖 95
圖4-21 不同對數下四分之一波長模式SMR元件之SEM圖 96
圖4-22 不同對數下四分之一波長模式SMR元件之AFM圖 96
圖4-23 SMR元件整體粗糙度趨勢 97
圖4-24 1對反射層 λ/2模式SMR訊號量測 98
圖4-25 2對反射層 λ/2模式SMR訊號量測 98
圖4-26 3對反射層 λ/2模式SMR訊號量測 99
圖4-27 4對反射層 λ/2模式SMR訊號量測 99
圖4-28 1對反射層 λ/4模式SMR訊號量測 100
圖4-29 2對反射層 λ/4模式SMR訊號量測 100
圖4-30 3 對反射層λ/4模式SMR訊號量測 101
圖4-31 4對反射層 λ/4模式SMR訊號量測 101
圖4-32 λ/2模式SMR 元件之Kt2與Q值趨勢圖 102
圖4-33 λ/4模式SMR元件之 Kt2與Q值趨勢圖 102
圖4-34 λ/2與λ/4 SMR元件之FOM趨勢圖 103
表一 常用的壓電材料 104
表二 AlN材料基本特性 104
表三 反應性射頻磁控濺鍍系統沉積氮化鋁之參數 105
表四 直流濺鍍系統沉積Mo和SiO2薄膜之參數 105
表六 JCPDS datas of AlN powder 106
表六 材料聲波特性參數 107
表七 氮化鋁參數測試條件 107
參考文獻 References
[1] S. H. Lee, K. H. Yoon and J. K. Lee, “Influence of Electrode
Configurations on the Quality Factor and Piezoelectric Coupling
Constant of Solidly Mounted Bulk Acoustic Wave Resonators”,
J. Appl. Phys., vol. 92, pp. 4062-4069, 2002.
[2] K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W.Andrus, “Bulk Acoustic Wave Resonators And Filters for 2GHz”, MTT-S 2002 Paper TH1D-6 Expanded.
[3] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance
Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol.43, pp. 5510-5515, 2004.
[4] P.B. Kirby, M.D.G. Potter, C.P. Williams and M.Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[5] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[6] R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[7] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN
Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” , J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[8] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.
[9] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using theSOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[10] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, 2002 IEEE Ultrasonic Symposium, pp. 945-948.
[11] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp. 981-983.
[12] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc. IEEE, vol. 53, pp. 575-581, 1965.
[13] K. M. Lakin, “Development of Miniature Filters for Wireless
Applications,” IEEE Trans. On Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[14] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminum Nitride Deposition by RF Sputtering”.
[15] M. A. Dubois, “Thin Film Bulk Acoustic Wave Resonators: a
technology-overview”, MEMSWAVE 03, France, 2003.
[16] K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, 1995 IEEE Ultrasonic Symposium, pp.905-908.
[17] S. Pinkett, W. Hunt, B. Barber and P. Gammel, “Broadband
Characterization of ZnO-Based Solidly Mounted Resonators”, 2002,IEEE International Freq. Con. Symp., pp. 15-19.
[18] H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp.3455–3457, 2002.
[19] K. Nakamura and H. Kanbara, “Theoretical Analysis of A
Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave
Multilayers”, 1998 IEEE International Freq. Con. Symp., pp.
876-881.
[20] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of
Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave
Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[21] D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved
Resonance Characteristics by Thermal Annealing of W/SiO2
Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[22] S. H. Park, B. C. Seo, H. D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Jpn. J. Appl. Phys., vol. 39, pp. 4115-4119, 2000.
[23] R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 292-296, 2000.
[24] K. M. Lakin, “Thin Film Resonator Technology”, IEEE International Frequency Control Symposium, pp. 765-778, 2005
[25] K. M. Lakin, “Thin Film Resonator and Filters”, IEEE International Frequency Control Symposium, pp. 895-906, 1999
[26] R. Lanz, M. A. Dubois and P. Muralt, “Solidly Mounted BAW
Filters for the 6 to 8 GHz Range Based on AlN Thin Films”, 2001IEEE Ultrasonics Symposium, pp. 843-846.
[27] H. P. Loebl, C. Metzmacher, D. N. Peligrad, R. Mauczok, M. Klee,W. Brand, R. F. Milsom, P. Lok, F.van Straten, A. Tuinhout and J. W. LobeekC, “Solidly Mounted Bulk Acoustic Wave Filters for The GHZ Frequency Range”, 2002 IEEE Ultrasonic Symposium, pp. 919-923.
[28] S. H. Kim, J. H. Kim, H. D. Park and G. Yoon, “AlN-Based Film Bulk Acoustic Resonator Devices with W/SiO2 Multilayers
Reflector for RF Bandpass Filter Application”, J. Vac. Sci. Technol. B, vol. 19, pp. 1164-1169, 2001.
[29] S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, 2002 IEEE International Fre. Con. Symp., pp.45-49.
[30] M. A. Dubois, P. Muralt and H. Matsumoto, V. Plessky, “Solidly Mounted Resonator Based on Aluminum Nitride Thin Film”, 1998 IEEE Ultrasonics Symposium, pp. 909-912.
[31] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama and T. Yamad,
“Influence of Metal Electrodes on Crystal Orientation of
Aluminum Nitride Thin Films”, Vacuum, vol. 74, pp. 699-703,
2004.
[32] F. Engelmark, J. Westlinder, G. F. Iriarte, I. Katardjiev and J.
Olsson, “Electrical Characterization of AlN MIS and MIM
Structures”, Trans. on IEEE Electron Devices, Vol. 50, pp.
1214-1219, 2003.
[33] M. A. Dubois and P. Muralt, “Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering”, J. App. Phys., vol. 89, pp. 6389-6395, 2001.
[34] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[35] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,pp. 425, 1990.
[36] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film
Technology”, D. Van Nostrand CO., INC., Princeton, N. J. 1968, p.706
[37] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134, 1991.
[38] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp. 696-701, 1991.
[40] 王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,
國立中山大學電機工程研究所,碩士論文,(1995)。
[41] 蔡家龍,“製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所,碩士論文,(2000)。
[42] 歐天凡,“沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所,碩士論文,(2004)。
[43] 廖秋風,“氮化物粉體”,材料與社會,40, pp. 59-67, 1990.
[44] D. C. Bertolet, H. Liu and J. W. Rogers, “Initial Stages of AlN
Thin-film Growth on Alumina Using Trimethylamine Alane and
Ammonia Precursors”, J. Appl. Phys., vol. 75, pp. 5385-5390,
1994.
[45]R.Lanz and P. Muralt, “Bandpass Filters for 8 Ghz Using Solidly Mounted Bulk Acoustic Wave Resonators” IEEE Trans. on Ultrason., Ferroelect. and Freq. Contr., 52, p.938, 2005.
[46]K. M. Lakin, K.T. McCarron, and J.F. McDonald, “Temperature Compensated Bulk Acoustic Thin Film Resonators”. IEEE, Ultrason. Symp., 1, p855, 2000.
[47]C.S. Lu and O. Lewis “Investigation of Film-Thickness Determination by Oscillating Quartz Resonators with Large Mass Load” J. Appl. Phys, 43(11), p. 4385, 1972.
[48] J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev and I. Petrov, “Dependence of the Electromechanical Coupling on the Degree of Orientation of c-Textured Thin A1N Films”, Trans. on IEEE Ultrason. Ferroelectr. Freq. and Contr., vol. 51, No.10, 2004.
[49]H. Nowotny and E. Benes, “General One-dimensional Treatment of the Layered Piezoelectric Resonator with Two Electrodes”, J. Acoustic Soc. Amer., 82, p.513, 1987.
[50]G. Wingqvist, J. Bjurstrom, L. Liljeholm, I. Katardjiev, and A. L. Spetz ,“Shear Mode AlN Thin Film Electroacoustic Resonator for Biosensor Appl.“, IEEE Sens, p.492, 2005.
[51]H. Zhang, M.S. Marma, E.S. Kim, C.E. Mckenna, and M.E. Thompson, “Implantable Resonator Mass Sensor for Liquid Biochemical Sensing”, Micro Electro Mechanical Systems, 17th IEEE International Conference on MEMS, p.341, 2004.
[52]M. Minakata, N. Chubachi, and Y. Kikuchi, “Variation of c-Axis Orientation of ZnO Thin Films Deposited by DC Diode Sputtering”, J. J. Appl. Phy., 2, p.474, 1973.
[53]S. V. Krishnaswamy, B. R. McAvoy, and W. J. Takei, “Oriented ZnO Films For Microwave Shear Mode Transducers”, IEEE Ultrason. Symp., p.476, 1982.
[54]J.S. Wang, K.M. Lakin, and A.R. Landin, “Sputtered c-Axis Inclined Piezoelectric Films and Shear Wave Resonators”, IEEE 37th Annual Symp. on Freq. Contr., p.144, 1983.
[55] Y. E. Lee, S. G. Kim, Y. J. Kim and H. J. Kim, “Effect of
Oblique Sputtering on Microstructural Modification of ZnO Thin
Films”, J. Vac. Sci. Technol. A 15(3), pp. 1194-1199, 1997.
[56]吳東庭,“雙頻固態微型諧震器與濾波器之頻率調變”,國立中山大學電機工程研究所碩士論文,(2007)。
[57] J. Bjurstrom, G. Wingqvist and I. Katardjiev, “Synthesis of
Textured Thin Piezoelectric AlN Films with a Nonzero mean tilt
for the fabrication of shear mode resonator”, IEEE Ultrason.
Symp., pp. 321-324, 2005.
[58] 魏清梁,“固態微型諧振器之壓電層與反射層研製”,國立中山大學電機工程研究所,碩士論文,(2005)。
[59] 徐茂協,”以Mo/SiO2為布拉格反射層製作固態諧振器與濾波器之研究”, 國立中山大學電機工程研究所,碩士論文,(2006)。
[60]R. Aigner, “MEMS in RF Filter Applications Thin-film Bulk Acoustic Wave Technology”, Infineon Technologies, Munich, Germany.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.214.32
論文開放下載的時間是 校外不公開

Your IP address is 3.149.214.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code