Responsive image
博碩士論文 etd-0826108-162242 詳細資訊
Title page for etd-0826108-162242
論文名稱
Title
超寬頻無線通訊系統之波型設計
Waveform Design for UWB Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
367
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-23
繳交日期
Date of Submission
2008-08-26
關鍵字
Keywords
脈衝設計、超寬頻、高斯脈衝、波型設計
SSGW, Spectrum Shifted Gaussian Waveform, waveform design, SZPI, Shifted Zero Point Insertion, Ultra-Wideband, Shifted Steepest sidelobe roll-off, FCC, SSSR, UWB, Ultra-wide Band, Gaussian Pulse
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
在本篇論文中,主要探討UWB 的波形設計。由於UWB 的功率頻譜限制全世界並無統一標準,在SSGW(Spectrum Shifted Gaussian Waveform)設計法中
我們採用了美規(FCC)、歐規(ECC)和日規JCC)的功率頻譜,而且歐規(ECC)和日規(JCC)還要求需要有DAA(Detect And Avoid)的技術,並且討論傳輸
速率為480 Mbps、240 Mbps 和120 Mbps 的情況。因此我們共設計了15 種脈衝來滿足各種需求。除此之外我們還另外使用了SSSR(Shifted Steepest sidelobe
roll-off)設計法和SZPI(Shifted Zero Point Insertion)設計法,討論了在480 Mbps的傳輸速率下,滿足美規(FCC)頻譜規範。
三種設計法有一個共通點,就是頻譜都利用了多個載波疊加而成。該設計方式最大的優勢在於多個頻譜合成的可適性較前人所提出的單一頻譜要佳。
從2005 年IEEE 802.15.3a 解散後,也就意味著UWB 的標準將由市場決定。目前仍有許多國家對UWB 的功率頻譜要求仍未決定,加上UWB 是unlicensed 的傳輸技術,意味著即使現再設計出一個完美滿足FCC 頻譜規範的波形,難保幾年後FCC 不會修改頻譜規範。加上UWB 的傳輸頻寬有12 GHz,如果不加上CR的技術,勢必會干擾到別的無線傳輸系統的信號。
我們提出的三種設計方式,都可以搭配CR 的技術。若CR 的技術成熟,利用我們所提出的設計方式,都可輕易的避開某些頻段達到互不干擾別的無線傳輸系統的信號。
Abstract
none
目次 Table of Contents
目錄
中文摘要................................................................................................................ I
誌謝.......................................................................................................................V
圖目錄..................................................................................................................XI
表目錄................................................................................................................XV
變數列表...........................................................................................................XIX
第一章 導論..........................................................................................................1
1.1 UWB的歷史沿革....................................................................................1
1.2 研究動機.................................................................................................1
1.3 文獻探討.................................................................................................3
1.4 背景知識.................................................................................................3
1.4.1 IEEE正式將UWB排入標準.........................................................4
1.4.2 抗干擾技術..................................................................................4
1.4.3 抗雜訊技術..................................................................................5
1.4.4 UWB特性.....................................................................................6
1.4.5 UWB如何定義? .........................................................................6
1.4.6 UWB實現方式的分歧:DS-UWB、MB-OFDM ......................7
1.4.7 Bluetooth也可改用UWB .............................................................8
1.5 論文貢獻以及架構.................................................................................8
第二章 SSGW設計法........................................................................................11
2.1 前言.......................................................................................................11
2.2 SSGW數學模型....................................................................................11
2.3 SSGW設計步驟....................................................................................11
2.3.1 頻譜切割....................................................................................12
2.3.2 高斯脈寬選擇............................................................................13
2.3.3 高斯頻譜中心頻率選擇............................................................13
2.3.4 合成頻譜疊加並調整功率........................................................17
2.4 滿足FCC功率頻譜密度的SSGW設計................................................17
2.4.1 使用2 ns高斯脈衝.....................................................................17
2.4.2 使用4 ns高斯脈衝.....................................................................41
2.4.3 使用8 ns高斯脈衝.....................................................................80
2.4.4 高斯脈寬對FCC頻譜的影響..................................................119
2.5 滿足ECC和JCC功率頻譜密度的SSGW設計...................................120
2.5.1 ECC和JCC功率頻譜介紹和切割............................................121
2.5.2 使用SSGW設計ECC和JCC功率頻譜....................................123
2.5.3 高斯脈寬對ECC和JCC頻譜的影響.......................................127
2.6 SSGW設計法的性能跟特性...........................................................127
2.6.1 頻譜可適性..............................................................................127
2.6.2 功率調整..................................................................................128
第三章 SSSR設計法........................................................................................129
3.1 前言.....................................................................................................129
3.2 SSR數學模型...................................................................................129
3.3 使用SSSR法設計...............................................................................132
3.3.1 頻譜切割..................................................................................132
3.3.2 SSR脈寬選擇...........................................................................133
3.3.3 SSR中心頻率選擇...................................................................133
3.3.4 合成頻譜疊加並調整功率......................................................138
3.4 滿足FCC功率頻譜密度的SSSR設計................................................138
3.4.1 使用2 ns的SSSR脈衝..............................................................138
3.5 SSSR設計法的性能跟特性................................................................159
3.5.1 SSR頻譜功率修正法...............................................................159
3.5.2 SSR頻譜位置修正法...............................................................161
第四章 SZPI設計法.........................................................................................165
4.1前言.......................................................................................................165
4.2 ZPI數學模型........................................................................................165
4.3 使用SZPI法設計................................................................................169
4.3.1 頻譜切割..................................................................................169
4.3.2 ZPI脈寬選擇.............................................................................170
4.3.3 ZPI中心頻率選擇.....................................................................170
4.3.4 合成頻譜疊加並調整功率......................................................172
4.4 滿足FCC功率頻譜密度的SZPI設計.................................................172
4.4.1 使用N+2的SZPI脈衝..............................................................172
4.4.2 使用N+4的SZPI脈衝..............................................................192
4.4.3 使用N+6的SZPI脈衝..............................................................214
第五章 結論與未來工作..................................................................................239
5.1 結論.....................................................................................................239
5.2 未來工作.....................................................................................................241
附錄A SSR時域方程式係數求解.....................................................................243
附錄B N+2的ZPI時域方程式係數求解...........................................................257
附錄C N+4的ZPI時域方程式係數求解...........................................................375
附錄D N+6的ZPI時域方程式係數求解...........................................................301
參考文獻............................................................................................................333
作者簡歷............................................................................................................335
參考文獻 References
參考文獻
【1】Ramirez-Mireles, F.; Scholtz, R.A, “Multiple-access performance limits with
time hopping and pulse position modulation”, IEEE Conference on Military
Communications, Volume:2, 18-21, Oct. 1998, Page(s): 529 -533.
【2】Durisi, G.; Benedetto, S., “Performance evaluation and comparison of different
modulation schemes for UWB multiaccess systems”, IEEE Conference on
Communications, Volume: 3, 11-15 May 2003, Page(s): 2187 -2191
【3 】Boubaker N.; Letaief K.B., “Ultra wideband DSSS for multiple access
communications using antipodal signaling”, IEEE International Conference on
Communications, Volume:3, 11-15 May 2003, Page(s): 2197- 2201 vol.3.
【4】Zhang, J.; Abhayapala, T.D.; Kennedy, R.A.; “Performance of ultra- wideband
correlator receiver using gaussian monocycles”, IEEE International Conference
on Communications, Volume: 3 , 11-15 May, 2003, Page(s): 2192 -2196
【5】Welborn, M.; McCorkle, J.; “The importance of fractional bandwidth in
Ultra-wideband pulse design”, IEEE International Conference on
Communications, Volume:2, 28 April-2 May 2002, Page(s): 753 -757.
【6】Cassioli D.; Win M.Z. and Molisch A.F., “The ultra-wide bandwidth indoor
channel: from statistical model to simulations”, IEEE Journal on Selected Areas
in Communications, Volume:20, Issue:6, Aug. 2002, Page(s): 1247- 1257.
【7】T.Eng; L.B.Milstein, “Coherent DS-CDMA performance in Nakagami multipath
fading”, IEEE Transaction on Communication, Volume:43, 1995,
Page(s):1134-1143.
【8】Marvin K.Simon, “Digital Communication over fading channels: a unified
approach to performance analysis”, John Wiley & Sons, Inc., July 2000.
【9】Y.L.Luke, “The special functions and their approximation”, vol.1, Academic
Press,1969.
【10 】Saleh, A.; Valenzuela, R.; “A Statistical Model for Indoor Multipath
Propagation”, IEEE Journal on Selected Areas in Communications, Volume:
5, Issue:2, Feb 1987, Pages:128 – 137.
【11】Spencer, Q.; Rice, M.; Jeffs, B.; Jensen, M , “A statistical model for angle of
arrival in indoor multipath propagation”, IEEE Conference on Vehicular
Technology, Volume:3 ,4-7 May 1997, Pages:1415 - 1419 .
【12】J. Foerster; Q. Li; and Intel research and development. “UWB Channel
Modeling Contribution from Intel”.
【13】M.Abramowitz; I.A.Stegun, “Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables”, New York: Dover Publication,
1970.
【14】Hongsan Sheng; Orlik, P.; Haimovich, A.M.; Cimini, L.J.; Jinyun Zhang, “On
the spectral and power requirements for ultra-wideband transmission”, IEEE
International Conference on Communications, Volume:1, 2003, Page(s): 738
-742.
【15】John. G. Proakis, “Digital Communications”, Second edition. New York:
McGraw-Hill, 1989.
【16】Liuqing Yang; Giannakis, G.B., “Optimal pilot waveform assisted modulation
for ultrawideband communications”, IEEE Transactions on Wireless
Communications, Volume:3, Issue:4, July 2004, Pages:1236 – 1249.
【17】Baccarelli, E.; Biagi, M., “A novel self-pilot-based transmit-receive architecture
for multipath-impaired UWB systems”, IEEE Transactions on Communications,
Volume:52, Issue:6, June 2004, Pages:891 – 895.
【18】Huaping Liu, “Error performance of a pulse amplitude and position modulated
ultra-wideband system over lognormal fading channels”, IEEE Communications
Letters, Volume:7, Issue:11, Nov. 2003, Pages:531 – 533.
【19】Hsiao-Hwa Chen, Cheng-Hsien Cai, Chien-Yao Chao and Yu-Hsin Lin,
Synthesization of Pulse Shaping Waveforms for Spectral Efficient Digital
Modulations– Some Practical Approaches, European Transactions on
Telecommunications (ETT), vol. 17, pp. 99-110, 2006. Published on line, 1
September 2005 at www.interscience.wiley.com
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.234.232.228
論文開放下載的時間是 校外不公開

Your IP address is 18.234.232.228
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code