Responsive image
博碩士論文 etd-0826108-171455 詳細資訊
Title page for etd-0826108-171455
論文名稱
Title
氧化鋅摻雜鈷之薄膜場效與傳輸機制之研究
Electric field effect and transport mechanism research on Co-doped ZnO films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
45
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-25
繳交日期
Date of Submission
2008-08-26
關鍵字
Keywords
氧化鋅、稀磁性半導體
ZnO, diluted magnetic semiconductors
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
在這份論文中,我們利用外加電場的場效結構,在氧化鋅摻雜金屬鈷的氧化物稀磁性半導體薄膜中,試圖釐清在室溫的磁性行為與不同溫區之電導特性。我們發現樣品中的電子是被束縛在一個半徑比束縛磁性極子理論所預估之半徑還要大的缺陷中,而且電子可以透過變程躍遷來做些微的移動,因此針對這些現象提出了同心圓的束縛載子理論,提供電子處於有限的躍遷能力之同心圓局域圖像。在理論中,當載子被局域在特定的缺陷時,它與樣品中所摻雜的磁性離子產生交互作用而形成束縛磁性極子於內層同心半徑裡,而其中不具有相同自旋方向的載子也可同時巡遊於外層的同心半徑中;相互鄰近的同心圓中,載子可以利用自旋極化或者變程躍遷的方式來移動。可以在氧化物稀磁性半導體上,同時對於電導傳輸與磁特性給予一個合理的解釋。
Abstract
The mechanism for the room temperature magnetic coupling and electric conduction in oxide diluted magnetic semiconductors (DMS) has been studied simultaneously on the Co:ZnO thin film by utilization of the electric field effect. We find that the carriers are bound on a defect in a radius much larger than the bounded magnetic polaron (BMP) radius, and can move by the variable range hopping (VRH) over a relative small distance. Therefore, a concentric bounded model consisting of a concentric localization configuration with a limited carrier VRH capability was proposed. In this model, the carriers localized around defects couples strongly with the doped magnetic ions forming a BMP in the inner sphere and can only itinerate with no spin coherence in the outer shell. Carriers can hop either by spin-polarized or by spin-independent VRH directly between or not directly between adjacent inner spheres, respectively. This model can explain both the electric and magnetic properties of the oxide DMS, and depicts an evolution of electric and magnetic properties associated with defect concentration.
目次 Table of Contents
Contents
Abstract‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐1
Contents ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐3
Table List‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐4
Figure List‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐5
Chapter 1 Introduction
1‐1 What are diluted magnetic semiconductors (DMSs)?‐‐‐6
1‐2 Why DMSs are important?‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐7
1‐3 Classification of DMSs‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐9
1‐4 Motivation‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐12
Chapter 2 Background
2‐1 Origin of the room temperature magnetism in DMS materials---‐14
2‐2 Variable range hopping model‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐20
Chapter 3 Sample Preparation and Measurements
3‐1 Sample Preparation‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐22
3‐2 Measurements‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐23
Chapter 4 Result and Discussion‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐29
Chapter 5 Conclusion‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐40
Reference‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐41
參考文獻 References
Reference
[1] S.A. Wolf, D.D. Awschalom et al., Science 294, 1488 (2001).
[2] H. Ohno, F. Matsukura, and Y. Ohno et al., JSAP international No. 5, 4 (2002).
[3] H. Akinaga and H. Ohno, IEEE Trans. Nano. 1, No. 1, 19 (2002).
[4] R.A. de Grot et al., Phys. Rev. Lett. 50, 2024 (1983).
[5] S. M. Watts et al., Phys. Rev B 61, 9621 (2000).
[6] J.–H. Park et al., Nature 392, 794, (1998).
[7] J. J. Versluijs, M. A. Bari, and J. M. D. Coey, Phys. Rev. Lett. 87, 026601 (2001).
[8] K.-I. Kobayashi et al., Nature 395, 677 (1999).
[9] R.P. Borges et al., J. Phys.:CM 11, L445-L450 (1999).
[10] K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000).
[11] Y. Matsumoto, M. Shono et al., Science 291, 854 (2001)
[12] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001)
[13] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engelhard, J. W. Rogers, Jr., K. Krishnan, D. R.
Gamelin, and S. A. Chambers, Phys. Rev. B 70, 054424 ((2004)
[14] M. Venkatesan, C. B. Fitzgerald, J.G. Lunney, and J.M. D. Coey, Phys. Rev. Lett.93, 177206, (2004)
[15] V. E. Wood and A. E. Austin, 1975 Magnetoelectric Interaction Phenomena in Crystals (London: Gordon and Breach)
[16] K. Yosida, Theory of Magnetism (Berlin: Springer, 1996)
[17] T. Story, R. R. Gałazka, R. B. Frankel, and P. A. Wolff, Phys. Rev. Lett. 56, 777 (1986)
[18] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 2000)
[19] T. Dietl and J. Spałek, Phys. Rev. Lett. 48, 355 (1982)
[20] J. Torrance, M. Shafer, and T. McGuire, Phys. Rev. Lett. 29 1168 (1972)
[21] A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
[22] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005)
[23] Zhao, T., Shinde, S. R., Ogale, S. B., Zheng, H., Venkatesan, T., Ramesh, R. & Sarma, S. Das Electric Field Effect in Diluted Magnetic Insulator Anatase Co: TiO2. Phys. Rev. Lett. 94, 126601 (2005).
[24] Ramesh, R. & Spaldin, Nicola A. Multiferroics: progress and prospects in thin films. Nature Materials 6, 21-29 (2007).
[25] Toyosaki, H., Fukumura, T., Yamada, Y., Nakajima, K., Chikyow, T., Hasegawa, T., Koinuma, H.& Kawasaki., M. Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor. Nature Materials 3, 221 (2004).
[26] Kittilstved, Kevin R., Schwartz, Dana A., Tuan, Allan C., Heald, Steve M., Chambers, Scott A. & Gamelin, Daniel R. Direct Kinetic Correlation of Carriers and Ferromagnetism in Co2+: ZnO. Phys. Rev. Lett. 97, 037203(2006).
[27] Mott, N. F. & Davies, E. A. Electronic Processes in Noncrystalline Solids, 2nd ed. (Oxford University Press, New York, 1979).
[28] Viret, M., Ranno, L. & Coey, J. M. D. Magnetic localization in mixed-valence manganites. Phys. Rev. B 55, 8067-8070 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.189.211
論文開放下載的時間是 校外不公開

Your IP address is 18.191.189.211
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code