Responsive image
博碩士論文 etd-0826108-182101 詳細資訊
Title page for etd-0826108-182101
論文名稱
Title
以蒙地卡羅法結合簡化模型於液晶分子之特性研究
Combining Monte Carlo algorithm and coarse-grained model to study the characteristics of liquid crystal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-05
繳交日期
Date of Submission
2008-08-26
關鍵字
Keywords
蒙地卡羅、迴轉半徑、液晶、秩序參數
Monte Carlo, liquid crystal, order parameter, radius of gyration
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1490
The thesis/dissertation has been browsed 5660 times, has been downloaded 1490 times.
中文摘要
本論文利用蒙地卡羅演算法(Monte Carlo)與Configurational Bias Monte Carlo 演算法結合簡化模型(coarse-grained model)研究液晶分子的結構特性。由分子數量較少所組成的奈米團蔟中,可觀察到奈米團蔟形成管狀螺旋有序的結構,隨著分子數量的增加發現結構有慢慢形成團蔟的趨勢。對於少條分子形成管狀結構,主要是因為作用點較為單純,奈米團蔟易於行程有序的結構。對於多條分子而言則由於作用點較多較為複雜,因此形成像球狀的團蔟,而在表面呈現局部有序的結構。另外,根據秩序參數的數值將結構分類,秩序參數為0.5 以上的結構歸類為管狀的結構,而在0.5 之下則歸類為團蔟結構。
Abstract
Configuration-bias Monte Carlo simulation is used to investigate the structural property of liquid crystal. Our results show that the surface molecules of the smaller nanoclusters are formed the helical structure, In addition, the morphologies of nanoclusters show a tube-like structure when the surface molecules formed the helical structure; however, as the surface molecules do not form the helical structure, the morphologies of nanoclusters become a ball-like structure. For the tube-like structure, because of the configurations of nanoclusters are simpler, the nanoclusters will show an order structure. In the case of the ball-like structure, the molecules will attract with others, so the nanocluster reveals an ordered structure at local area. According to the result of the averaged order parameters, as the averaged order parameter larger than 0.5, the configuration of nanocluster will be a tube-like structure, while as the averaged order parameters smaller than 0.5, the configuration of nanocluster will form a ball-like structure.
目次 Table of Contents
目錄

目錄 I
圖目錄 III
表目錄 V
中文摘要 VI
英文摘要 VII

第一章 緒論 1
1.1 研究動機 1
1.2 液晶分子簡介 4
1.2.1 熱向性液晶: 4
1.2.2 液向性液晶: 8
1.3 文獻回顧 9
1.4 本文架構 11
第二章 簡化模型理論與勢能函數 12
2.1 簡化模型理論 12
2.1.1 Linked vector簡化法 12
2.1.2 等效能量 13
2.2 勢能函數 15
2.2.1 液晶分子之作用勢能 15
第三章 蒙地卡羅演算法與CBMC演算法 19
3.1 蒙地卡羅演算法(Metropolis Monte Carlo Algorithm) 20
3.2 Configurational Bias Monte Carlo(CBMC)演算法 22
第四章 數值方法 24
4.1 物理參數與無因次化 24
4.2 數值統計方法 26
4.2.1 方向秩序參數(orientation order parameter) 26
4.2.2 迴轉半徑(radius of gyration) 27
4.3 模擬流程圖 29
4.3.1 主要模擬流程圖 29
4.3.2 蒙地卡羅演算法之流程圖 30
4.3.3 CBMC演算法之流程圖 31
第五章 結果分析與討論 32
5.1 不同數量的液晶分子所形成之結構 32
5.1.1 物理模型之建構 32
5.1.2 液晶分子的結構排列 44
5.2 不同尾鏈的效應 54
5.2.1 物理模型之建構 54
5.2.2 不同尾鏈的結構排列 56
5.2.3 尾鏈的效應 66
第六章 結論與建議 69
6.1 結論 69
6.2 建議與未來展望 71
參考文獻 72
參考文獻 References
[1] B. Zhang, K. Li, V. G. Chigrinov, H.-S. Kwok and H.-C. Huang, "Application of Photoalignment Technology to Liquid-Crystal-on-Silicon Microdisplays," Jpn. J. Appl. Phys. 44, 3983 (2005).
[2] M. YE, B. WANG, T. TAKAHASHI and S. SATO, "Properties of Variable-Focus Liquid Crystal Lens and Its Application in Focusing System," Opt. Rev. 14, 173 (2007).
[3] H. Ren, Y.-H. Fan and S.-T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks," opt. lett. 29 (14), 1608 (2004).
[4] C.-C. Cheng, C. A. Chang and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Optics Express 14 (9), 4101 (2006).
[5] S. J. Woltman, G. D. Jay and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 (2007).
[6] P. Holstein, M. Bender, P. Galvosas, D. Geschke and J. Karger, "Anisotropic Diffusion in a Nematic Liquid Crystal- An Electric Field
PFG NMR Approach," J. Magn. Reson. 143, 427 (2000).
[7] J. S. Gwag, J. C. Kim and T.-H. Yoon, "Effect of polyimide layer surfaces on pretilt angles and polar anchoring energy of liquid crystals," J. Appl. Phys. 100, 093502 (2006).
[8] E. Somma, C. Chi, B. Loppinet, J. G. a. R. Graf, G. Fytas and H. W. S. a. G. Wegner, "Orientation dynamics in isotropic phases of model oligofluorenes: Glass or liquid crystal," J. Chem. Phys. 124, 204910 (2006).
[9] S. Yilmaz and A. Bozkurt, "Spectroscopic measurement of liquid crystal anisotropy in the ultraviolet/visible region," Mater. Chem. Phys. 107 (2-3), 410 (2008).
[10] N. J. Mottram, C. M. Care and D. J. Cleaver, "Control of the nematic-isotropic phase transition by an electric field," Phys. Rev. E 74, 041703 (2006).
[11] S. Jaradat, P. D. Brimicombe, C. Southern, S. D. Siemianowski, E. DiMasi, M. Osipov, R. Pindak and H. F. Gleeson, "Unexpected field-induced phase transitions between ferrielectric and antiferroelectric liquid crystal structures," Phys. Rev. E 77, 010701 (2008).
[12] Y.-T. Kim, S. Hwang, J.-H. Hong and S.-D. Lee, "Alignment layerless flexible liquid crystal display fabricated by an imprinting technique at ambient temperature," Appl. Phys. Lett. 89, 173506 (2006).
[13] K. Takekoshi, K. Ema, H. Yao, Y. Takanishi, J. Watanabe and H. Takezoe, "Appearance of a Liquid Crystalline Nematic-Isotropic Critical Point in a Mixture System of Rod- and Bent-Shaped Molecules," Phys. Rev. Lett. 97, 197801 (2006).
[14] A. Jakli, G. Liao, I. Shashikala, U. S. Hiremath and C. V. Yelamaggad, "Chirality and polarity transfers between bent-core smectic liquid-crystal substances," Phys. Rev. E 74, 041706 (2006).
[15] F. Mercuri, S. Paoloni, U. Zammit, F. Scudieri and M. Marinelli, "Strain effects at the hexatic-B–smectic-A transition in the 65OBC liquid crystal," Phys. Rev. E 74, 041707 (2006).
[16] I.-S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong and Y. H. Lee, "Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field," J. Appl. Phys. 100, 074306 (2006).
[17] S. A. Jewell and J. R. Sambles, "Dynamic response of a dual-frequency chiral hybrid aligned nematic liquid-crystal cell," Phys. Rev. E 73, 011706 (2006).
[18] G. B. I. Dierking and K. Matthews, "Electromigration of microspheres in nematic liquid crystals," Phys. Rev. E 73, 011702 (2006).
[19] O. D. Lavrentovich and M. Kleman, "Comment on "Structure of Smectic Defect Cores: X-Ray Study of 8CB Liquid Crystal Ultrathin Films"," Phys. Rev. Lett. 97, 159801 (2006).
[20] J.-P. Michel, E. Lacaze, M. Goldmann and M. Alba, Phys. Rev. Lett. 97, 159802 (2006).
[21] A. J. McDonald and S. Hanna, "Atomistic Computer Simulations of Terraced Wetting of Model 8CB Molecules at Crystal Surfaces.," Mol. Crys. Liq. Crys. 413 (1), 135 (2004).
[22] M. Tsige, M. P. Mahajan, C. Rosenblatt and P. L. Taylor, "Nematic order in nanoscopic liquid crystal droplets," Phys. Rev. E 60, 638 (1999).
[23] M. I. Capar and E. Cebe, "Molecular dynamic study of the odd-even effect in some 4-n-alkyl-4-cyanobiphenyls," Phys. Rev. E 73, 061711 (2006).
[24] M. A. Bates and G. R. Luckhurst, "Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay–Berne mesogen," J. Chem. Phys. 110, 7089 (1999).
[25] A. J. McDonald and S. Hanna, "Atomistic simulation of a model liquid crystal," J. Chem. Phys. 124, 164906 (2006).
[26] J. Pelaez and M. R. Wilson, "Atomistic Simulations of a Thermotropic Biaxial Liquid Crystal," Phys. Rev. Lett. 97, 267801 (2006).
[27] L. V. Mirantsev and E. G. Virga, "Molecular dynamics simulation of a nanoscopic nematic twist cell," Phys. Rev. E 76, 021703 (2007).
[28] J. Pelaez and M. Wilson, "Molecular orientational and dipolar correlation in the liquid crystal mixture E7: a molecular dynamics simulation study at a fully atomistic level," Phys. Chem. Chem. Phys. 9, 2968 (2007).
[29] A. V. Zakharov, A. V. Komolkin and A. Maliniak, "Rotational viscosity in a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation," Phys. Rev. E 59, 6802 (1999).
[30] S. Kuwajima and A. Manabe, "Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation," Chem. Phys. Lett. 105, 332 (2000).
[31] D. L. Cheung, S. J. Clark and M. R. Wilson, "Calculation of the rotational viscosity of a nematic liquid crystal," Chem. Phys. Lett. 356, 140 (2002).
[32] D. L. Cheung and F. Schmid, "Monte Carlo simulations of liquid crystals near rough walls," J. Chem. Phys. 122, 074902 (2005).
[33] J. Xu, R. L. B. Selinger, J. V. Selinger and R. Shashidhar, "Monte Carlo simulation of liquid-crystal alignment and chiral symmetry-breaking " J. Chem. Phys. 115, 4333 (2001).
[34] M. Bazec and S. Zumer, "Simulation of phase separation of polymer–liquid-crystal mixtures and the effect of confining external surfaces," Phys. Rev. E 73, 021703 (2006).
[35] C. Peter, L. D. Site and K. Kremer, "Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal," Soft Matter 4, 859 (2008).
[36] J. D. McCoy and J. G. Curro, "Mapping of Explicit Atom onto United Atom Potentials," Macromolecules 31, 9362 (1998).
[37] D. Reith, M. Putz and F. Muller-Plathe, J. Comput. Chem. 24, 1624 (2003).
[38] M. Cifelli, G. Cinacchi and L. D. Gaetani, "Smectic order parameters from diffusion data," J. Chem. Phys. 125 (16), 164912 (2006).
[39] S. Lin, N. Numasawa, T. Nose and J. Lin, "Coarse-Grained Molecular Dynamic Simulations for Lyotropic Liquid-Crystalline Solutions of Semiflexible Rod-Like Molecules," Mol. Crys. Liq. Crys. 466 (1), 53 (2007).
[40] J. G. Gay and B. J. Berne, "Modification of the overlap potential to mimic a linear site–site potential," J. Chem. Phys. 74, 3316 (1981).
[41] M. A. Bates and G. R. Luckhurst, "Computer simulation studies of anisotropic systems. The density and temperature dependence of the second rank orientational order parameter for the nematic phase of a Gay–Berne liquid crystal " Chem. Phys. Lett. 281, 193 (1997).
[42] M. A. Bates, "Coarse grained models for flexible liquid crystals: Parameterization of the bond fluctuation model," J. Chem. Phys. 120, 2026 (2004).
[43] J. A. Moreno-Razo, E. D. Herrera and P. S. H. L. Klapp, "Fractionation in Gay-Berne liquid crystal mixtures," Phys. Rev. E 76, 041703 (2007).
[44] T. C. Clancy and J. A. Hinkley, "Coarse-Grained and Atomistic Modeling of Polyimides " NASA TM-2004-213030 (2004).
[45] S. J. Marrink, A. H. d. Vries and A. E. Mark, "Coarse Grained Model for Semiquantitative Lipid Simulations," J. Phys. Chem. B 108, 750 (2004).
[46] G. Srinivas, S. O. Nielsen, P. B. Moore and M. L. Klein, "Molecular Dynamics Simulations of Surfactant Self-Organization at a Solid-Liquid Interface," J. Am. Chem. Soc. 128, 848 (2006).
[47] G. M. Odegard, T. C. Clancy and T. S. Gates, "Modeling of the mechanical properties of nanoparticle/polymer composites," Polymer 46, 553 (2005).
[48] S. Lifson and A. Warshel, "Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules," J. Chem. Phys. 49, 5116 (1968).
[49] A. Warshel and S. Lifson, "Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes," J. Chem. Phys. 53, 582 (1970).
[50] M. Levitt and S. Lifson, "Refinement of protein conformations using a macromolecular energy minimization procedure," J. Mol. Biol. 46, 269 (1969).
[51] A. T. Hagler, P. S. Stern, R. Sharon, J. M. Becker and F. Naider, "Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results," J. Am. Chem. Soc. 101, 6842 (1979).
[52] M. Levitt, "Molecular dynamics of native protein: I. Computer simulation of trajectories," J. Mol. Biol. 168, 595 (1983).
[53] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, "CHARMM: A program for macromolecular energy, minimization, and dynamics calculations," J. Comput. Chem. 4, 187 (1983).
[54] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta and P. Weiner, "A new force field for molecular mechanical simulation of nucleic acids and proteins," J. Am. Chem. Soc. 106, 765 (1984).
[55] W. F. v. Gunsteren and H. J. C. Berendsen, "Groningen Molecular Simulation (GROMOS) Library Manual," Bimos, University of Groningen, Groningen (1987).
[56] M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, "Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution," Comput. Phys. Commun. 91, 215 (1995).
[57] M. Levitt and A. Warshel, "Computer simulation of protein folding," Nature 253, 694 (1975).
[58] M. Levitt, "Effect of proline residues on protein folding," J. Mol. Biol. 145, 251 (1981).
[59] J. A. D. MacKerell, D. Bashford, M. Bellott, J. R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," J. Phys. Chem. B 102, 3586 (1998).
[60] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys. 21, 1087 (1953).
[61] D. Frenkel and B. Smit, "Understanding molecular simulation-from algorithms to applications,," Academic Press (2001).
[62] D. C. Rapaport, "The Art of Molecular Dynamics Simulation," Cambridge University Press (1997)
[63] H. J. Muller and W. Haase, "Refractive Indices, Density and Order Parameters for some Biphenyl Cyclohexanes " Mol. Crys. Liq. Crys. 409 (1), 127-135 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code