Responsive image
博碩士論文 etd-0826109-152046 詳細資訊
Title page for etd-0826109-152046
論文名稱
Title
第一型Interleukin-1 receptor所誘導的發炎反應可對抗由綠膿桿菌所引起的肺炎
Type-1 Interleukin-1 Receptor is Essential for Host Defense Against Pseudomonas aeruginosa-induced Pneumonia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-16
繳交日期
Date of Submission
2009-08-26
關鍵字
Keywords
第一型Interleukin-1 receptor、綠膿桿菌、肺炎
pseudomonas aeruginosa, pneumonia, Type-1 Interleukin-1 receptor
統計
Statistics
本論文已被瀏覽 5717 次,被下載 1501
The thesis/dissertation has been browsed 5717 times, has been downloaded 1501 times.
中文摘要
Interleukin-1(IL-1)為一種自發性免疫反應中產生的促發炎因子,IL-1會與其特有的受體結合並誘導一連串的發炎反應。本研究探討此第一型IL-1受體(type-1 IL-1R)在小鼠由綠膿桿菌引發肺炎時所扮演的角色,將綠膿桿菌注入正常(WT)和第一型IL-1受體缺失(IL1R-/-)小鼠的氣管後,於8小時至24小時觀察其肺部微血管滲漏、MPO活性、NF-κB的表現、iNOS、IL-1β以及其他前促炎因子的表現。結果顯示在注入菌8小時後,WT小鼠所誘發的發炎反應皆比IL1R1-/-小鼠高,但IL1R1-/-小鼠在24小時後的存活率卻比WT小鼠低。當研究IL1R1-/-小鼠高死亡率的原因時,發現IL1R1-/-小鼠肺部及血中的含菌量均較WT小鼠有明顯的增加,而由PMN吞噬活性的實驗顯示WT與IL1R1-/-小鼠的PMN的噬菌活性沒有差異。進一步利用基因嵌合小鼠證實引發IL1R1-/-小鼠肺炎的細菌轉移至血液並無法由PMN清除。同樣的,在24小時時,IL1R1-/-小鼠肺部微血管的滲漏情形也較WT嚴重,當在小鼠引發肺炎後8小時給予iNOS抑制劑SMT時,可減少IL1R1-/-小鼠在引發肺炎後24小時的肺部通透性、死亡率、肺部和血中的含菌量,證實IL1R1-/-小鼠的肺部iNOS表現並造成肺部通透性上升係造成高死亡率的主因,同時顯示此實驗模式下所引發的菌血症及死亡可藉由調控iNOS的活性而改善。
Abstract
IL-1 is an essential pro-inflammatory factor in inflammation response. The effect of IL-1 is through binding to the IL-1 receptor that triggers the following signal transduction pathway. To study the role of IL-1 receptor-mediated signal pathway in inflammatory response, injecting P. aeruginosa into trachea of wild-type (WT) and type-1 IL-1 receptor knock-out (IL-1R1-/-) mice was used as the experimental model. Injecting bacterium into trachea of mice will induce pneumonia which increases accumulation of neutrophils, production of nitric oxide, expression of intercellular adhesion molecule-1 as well as many kinds of cytokines and causes the lung damage. The pneumonia-induced lung damage and inflammation at 24 hr after injecting P. aeruginosa into trachea were more severe in knock-out than in WT mice, as demonstrated by increases in extravasations of Evans blue dye (EBD), myeloperoxidase (MPO) activity, expression of iNOS, IL-1 beta and ICAM-1, and higher mortality of knock-out mice. The cause of the high mortality in knock-out mice was further investigated by culturing the lung and blood samples for bacterial counts. The bacterial counts of lung and blood of IL-1R1-/- mice were all higher than that of WT mice in 8 to 24 hr after injection of bacterium. Finally, chimeric mice (WT → WT, IL1R1-/- →IL1R1-/-, WT → IL1R1-/-, IL1R1-/- → WT) were generated and used to determine the role of PMN cells of blood. Suggesting that increased amounts of bacteria in lung and blood is related to the higher mortality in knock-out mice and the type-1 IL-1 receptor is essential for mice to against pneumonia in this model.
目次 Table of Contents
Abstract in Chinese .......................................................................... 3
Abstract in English ........................................................................... 4
Introduction ...................................................................................... 5
Materials and Methods ..................................................................... 12
Results .............................................................................................. 20
Discussion ......................................................................................... 25
Figures .............................................................................................. 31
References ........................................................................................ 42
參考文獻 References
1. Schultz MJ, Rijneveld W, Floruin S, Edwards CK, Dinarello CA, Van der Pol T. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 2002; 282:L285–L290.
2. Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2007; 292:312-322.
3. Mizgerd JP. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol. 2002; 14:123-32.
4. Mortelliti MP, Manning HL. Acute respiratory distress syndrome. Am Fam Physician. 2002; 65:1823-30.
5. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005; 353:1685-93.
6. Wang Z, Chen F, Zhai R, Zhang L, Su L, Lin X, Thompson T, Christiani DC. Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS ONE. 2009; 4:e4380.
7. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder -Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, Ryffel B, Couillin I. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007; 117:3786-99.
8. Chen Q, Sen G, Snapper CM. Endogenous IL-1R1 signaling is critical for cognate CD4+ T cell help for induction of in vivo type 1 and type 2 antipolysaccharide and antiprotein Ig isotype responses to intact Streptococcus pneumoniae, but not to a soluble pneumococcal conjugate vaccine. J Immunol. 2006; 177:6044-51.
9. Fasano MB, Cousart S, Neal S, McCall CE. Increased expression of the interleukin 1 receptor on blood neutrophils of humans with the sepsis syndrome. J Clin Invest. 1991; 88:1452-9.
10. Chen LW, Chang WJ, Wang JS, Hsu C. Interleukin-1 mediates thermal injury-induced lung damage through C-Jun NH2-terminal kinase signaling. Crit Care Med. 2007;35:1113-22.
11. Dias-Junior CA, Cau SB, Tanus-Santos JE. Role of nitric oxide in the control of the pulmonary circulation: physiological, pathophysiological, and therapeutic implications. J Bras Pneumol. 2008; 34:412-9.
12. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006; 147:S193-S201.
13. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004; 84:731-65.
14. Haworth SG. Role of the endothelium in pulmonary arterial hypertension. Vascul Pharmacol. 2006; 45:317-25.
15. Förstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 1998; 12:773-90.
16. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999; 43:521-31.
17. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995; 333:214-21.
18. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, et al. Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med. 2001; 164:1038-42.
19. Nicod LP. The endothelium and genetics in pulmonary arterial hypertension. Swiss Med Wkly. 2007; 137:437-42.
20. Sittipunt C, Steinberg KP, Ruzinski JT, Myles C, Zhu S, Goodman RB, et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001; 163:503-10.
21. Su CF, Yang FL, Chen HI. Inhibition of inducible nitric oxide synthase attenuates acute endotoxin-induced lung injury in rats. Clin Exp Pharmacol Physiol. 2007; 34:339-46.
22. Liu X, Bee D, Barer GR. Role of nitric oxide synthase and cyclooxygenase in pulmonary vascular control in isolated perfused lungs of ferrets, rats and rabbits. Exp Physiol. 1999; 84:907-16.
23. Hart CM. Nitric oxide in adult lung disease. Chest. 1999; 115:1407-17.
24. Mortelliti MP, Manning HL. Acute respiratory distress syndrome. Am Fam Physician. 2002; 65:1823-30.
25. Oishi P, Grobe A, Benavidez E, Ovadia B, Harmon C, Ross GA, et al. Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am J Physiol Lung Cell Mol Physiol. 2006; 290:L359-66.
26. Kuryłowicz A, Nauman J. The role of nuclear factor-kappaB in the development of autoimmune diseases: a link between genes and environment. Acta Biochim Pol. 2008; 55:629-47.
27. Srivastava SK, Ramana KV. Focus on molecules: nuclear factor-kappaB. Exp Eye Res. 2009; 88:2-3.
28. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature.1998; 391:410–413.
29. Chen LW, Chang WJ, Wang JS, et al: Thermal injury-induced peroxynitrite production and pulmonary inducible nitric oxide synthase expression depend on JNK/AP-1 signaling. Crit Care Med. 2006; 34:142–150.
30. Magnotti LJ, Upperman JS, Xu DZ, et al: Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg 1998; 228:518–527.
31. Patterson CE, Rhoades RA, Garcia JG: Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J Appl Physiol. 1992; 72:865–873.
32. Matute-Bello G, Lee JS, Frevert CW, et al: Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J Immunol Methods. 2004; 292:25–34.
33. Chen LW, Chang WJ, Wang JS, Hsu CM. Interleukin-1 mediates thermal injury-induced lung damage through C-Jun NH2-terminal kinase signaling. Crit Care Med. 2007; 35:1113-22.
34. Fang FC. Host/pathogen interactions: mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 1997; 99:2818–2825.
35. Szabo A, Hake P, Salzman AL, et al: Beneficial effects of mercaptoethylguanidine, an inhibitor of the inducible isoform of nitric oxide synthase and a scavenger of peroxynitrite, in a porcine model of delayed hemorrhagic shock. Crit Care Med 1999; 27:1343–1350
36. Power MR, Li B, Yamamoto M, Akira S, Lin TJ. A role of Toll-IL-1 receptor domain-containing adaptor-inducing IFN-beta in the host response to Pseudomonas aeruginosa lung infection in mice. J Immunol. 2007; 178:3170-6.
37. Koh Y, Hybertson BM, Jepson EK, Cho OJ, and Repine JE. Cytokine-induced neutrophil chemoattractant is necessary for interleukin-1-induced lung leak in rats. J Appl Physiol. 1995; 79: 472–478.
38. Leff JA, Baer JW, Bodman ME, Kirkman JM, Shanley PF, Patton LM, Beehler CJ, McCord JM, and Repine JE. Interleukin- 1-induced lung neutrophil accumulation and oxygen metabolite-mediated lung leak in rats. Am J Physiol Lung Cell Mol Physiol 1994; 266:L2–L8.
39. Ulich TR, Yin SM, Guo KZ, del Castillo J, Eisenberg SP, and Thompson RC. The intratracheal administration of endotoxin and cytokines. III. The interleukin-1 (IL-1) receptor antagonist inhibits endotoxin- and IL-1-induced acute inflammation. Am J Pathol. 1991; 138: 521–524.
40. Laichalk LL, Kunkel SL, Strieter RM, Danforth JM, Bailie MB, and Standiford TJ. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun. 1996; 64: 5211–5218.
41. Van der Poll T, Keogh CV, Buurman WA, and Lowry SF. Passive immunization against tumor necrosis factor-α impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med. 1997; 155:603–608.
42. Smith JA. Neutrophils, host defense, and inflammation : a double-edged sword. J Leukoc Biol. 1994; 56: 672-686.
43. Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa Chronic Lung Infection Requires Cystic Fibrosis Transmembrane Conductance Regulator-Modulated Interleukin-1 (IL-1) Release and Signaling through the IL-1 Receptor. Infect Immun. 2007; 75:1598-608.
44. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen- Host Interactions in Pseudomonas aeruginosa Pneumonia. Am J Respir Crit Care Med. 2005; 1209-1223.
45. Mizgerd JP, Spieker MR, Doerschuk CM. Early Response Cytokines and Innate Immunity: Essential Roles for TNF Receptor 1 and Type I IL-1 Receptor During Escherichia coli Pneumonia in Mice. J Immunol. 2001; 166:4042-8.
46. Kafka D, Ling E, Feldman G, Benharroch D, Voronov E, Givon -Lavi N, Iwakura Y, Dagan R, Apte RN, Mizrachi-Nebenzahl Y. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection. Int Immunol. 2008; 20:1139-46.
47. Juffermans NP, Florquin S, Camoglio L, Verbon A, Kolk AH, Speelman P, van Deventer SJ, van Der Poll T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis. 2000; 182:902-8.
48. Ganter MT, Roux J, Miyazawa B, Howard M, Frank JA, Su G, Sheppard D, Violette SM, Weinreb PH, Horan GS, Matthay MA, Pittet JF. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res. 2008; 102:804-12.
49. Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA. Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest. 2002; 121:69S-70S.
50. White KE, Ding Q, Moore BB, Peters-Golden M, Ware LB, Matthay MA, Olman MA. Prostaglandin E2 mediates IL-1beta-related fibroblast mitogenic effects in acute lung injury through differential utilization of prostanoid receptors. J Immunol. 2008; 180:637-46.
51. Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med. 1999; 160:961-7.
52. Meduri GU. Clinical review: a paradigm shift: the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit Care. 2002; 6:24-9.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code