Responsive image
博碩士論文 etd-0826109-170818 詳細資訊
Title page for etd-0826109-170818
論文名稱
Title
非球面微透鏡之改良LIGA製程探討
Fabrication of aspherical micro-lens using modified LIGA process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-29
繳交日期
Date of Submission
2009-08-26
關鍵字
Keywords
乾蝕刻、高深寬比非球面微透鏡、有機發光二極體、取出效率
Dry Etching, Extraction Efficiency, High Aspect Ratio Aspherical Microlens, Organic Light-Emitting Diode
統計
Statistics
本論文已被瀏覽 5614 次,被下載 0
The thesis/dissertation has been browsed 5614 times, has been downloaded 0 times.
中文摘要
本研究是利用改良之LIGA製程來製作高深寬比非球面微透鏡陣列,讓OLED因內全反射所造成的出光量低落得以改善。
目前OLED的發光取出效率(Extraction Efficiency)普遍不高,如何增加OLED的發光取出效率是值得探討。研究中分析影響微透鏡成形之相關參數作用,如直徑尺寸變化、乾蝕刻參數與電鑄速率之影響。實驗結果顯示,尺寸在熱回流與乾時刻階段中變化誤差約5%;乾蝕刻中之氧氣含量與光阻表面間有著相當的影響力;高的電鑄速率有助於光阻表面缺陷彌平;乾蝕刻造成之底切會使得電鑄起始層不連接。非球面微透鏡陣列所能提高之輝度最大有15倍。
Abstract
This study utilizes a modified LIGA process to fabricate a high aspect ratio aspherical micro lens array, which improves low light output of OLED due to its intrinsic total internal reflection.
Presently typical OLED extraction efficiency is not high. How to increase OLED extraction efficiency is a valuable topic to discuss. This study analyzes related parameters that influence the formation of micro lenses, for example, the influence of variation of diametric dimension, dry etching parameters and electroforming rate. The experimental results indicate that the tolerance of dimensional variation of the diameter is about 5% during the thermal reflow and dry etching stage. The oxygen content and the photoresist surface during dry etching influence the result. A high electroforming rate is helpful for covering the surface defects on photoresist. An undercut caused by dry etching will discontinue the initial electroformed layers. A apherical microens array can raise the luminance to a maximum of 15 times higher.
目次 Table of Contents
目錄I
圖目錄IV
表目錄VIII
摘要IX
AbstractX
第一章 緒論 1
1.1前言1
1.2 研究目的與動機2
1.3 文獻回顧5
1.4 本文架構13
第二章 有機發光二極體15
2.1 認識OLED15
2.1.1 OLED之取出效率16
2.2 OLED之發展與微透鏡結合18
2.2.1 OLED發展軌跡18
2.2.2 OLED與微透鏡陣列之結合應用20
2.2.3非球面微透鏡陣列之設計理念24
第三章 非球面微透鏡陣列之製程26
3.1 製程原理26
3.1.1 LIGA技術26
3.1.2 黃光微影27
3.1.3 乾蝕刻28
3.1.4 真空濺鍍29
3.1.5 電鑄29
3.2 改良之LIGA製程30
3.2.1 實驗參數34
3.2.2 PDMS參數40
3.3 設備簡介41
3.3.1 UV曝光機41
3.3.2 旋轉塗佈機41
3.3.3 加熱平台42
3.3.4 真空濺鍍機43
3.3.5 光學顯微鏡44
3.3.6 反應式離子蝕刻機 44
3.3.7 三維輪廓儀45
3.3.8 掃描式電子顯微鏡 46
3.3.9 手提示UV燈源46
3.3.10 光學量測系統47
第四章 結果與討論49
4.1 前言49
4.2 檢測結果49
4.2.1 製程中之尺寸變化 49
4.2.2 乾蝕刻含氧量參數之影響52
4.2.3 不同電鑄速率之影響58
4.3 光學性質之量測64
4.3.1 量測方式64
4.3.2 量測結果64
4.4 影響非球面微透鏡陣列良率之因素69
第五章 結論與未來展望71
5.1 結論71
5.2 未來展望72
參考文獻73
參考文獻 References
[1]C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Applied Physics Letters, Vol. 51, No. 12, pp. 913-915, 1987.
[2]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence”, Applied Physics Letters, Vol. 75, No. 1, pp. 4-6, 1999.
[3]B. H. Cumpston, I. D. Parker, K. F. Jensen, “In situ characterization of the oxidative degradation of a polymeric light emitting device”, Journal of Applied Physics, Vol. 81, pp. 3716-3720, 1997.
[4]V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klaerner, R. D. Miller, D. C. Miller, “Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices”, Macromolecules, Vol. 32, pp. 361-369, 1999.
[5]T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer”, Advanced Materials, Vol. 13, pp. 1149-1152, 2001.
[6]J. Arai, H. Kawai, F. Okano, “Microlens arrays for integral imaging system”, Applied Optics, Vol. 45, pp. 9066-9078, 2006.
[7]K. Tvingstedt, S. Dal Zilio, O. Inganas, M. Tormen, "Trapping light with micro lenses in thin film organic photovoltaic cells," Optics Express, Vol. 16, pp. 21608-21615, 2008.
[8]N. F. Borrelli, D. L. Morse, R. H. Bellman, “Photolytic technique for producing microlenses in photosensitive glass”, Applied Optics, Vol. 24, No. 16, pp. 2520-2525, 1985.
[9]M. C. Hutley, “Optical techniques for the generation of microlens arrays”, Journal of Modern Optics, Vol. 37, No. 2, pp. 253-265, 1990.
[10]C. K. Chung, Y. Z. Hong, “Fabrication and analysis of the reflowed microlens arrays using JSR THB-130 N photoresist with different heat treatments”, Microsystem Technologies, Vol. 13, pp. 523-530, 2007.
[11]Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays”, Applied Optics, Vol. 27, pp. 1281-1284, 1988.
[12]J. O. Choi, J. A. Morse, J. C. Corelli, J. P. Silverman, H. Bakhru, “Degradation of poly (methylmethacrylate) by deepultraviolet, x-ray, electron beam, and proton beam irradiations”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 6, pp. 2286-2289, 1988.
[13]C. P. Lin, H. Yang, C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process”, Journal of Micromechanics and Microengineering, Vol. 13, pp. 775-781, 2003.
[14]W. Däschner, P. Long, R. Stein, C. Wu, S. H. Lee, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, pp. 3730-3733, 1996.
[15]W. R. Cox, T. Chen, D. W. Ussery, D. J. Hayes, R. F. Hoenigman, D. L. MacFarlane, E. Rabinovich, “Microjet Printing of Anamorphic Microlens Arrays”, SPIE Proceedings, Vol. 2687, pp. 89-98, 1996.
[16]H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont. “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization”, Journal of Optics A: Pure and Applied Optics, Vol. 4, No. 4, pp. S22-S28, 2002.
[17]Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays”, Applied Optics, Vol. 27, pp. 1281-1284, 1988.
[18]J. O. Choi, J. A. Morse, J. C. Corelli, J. P. Silverman, H. Bakhru, “Degradation of poly (methylmethacrylate) by deepultraviolet, x-ray, electron beam, and proton beam irradiations”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 6, pp. 2286-2289, 1988.
[19]P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates”, TRANSDUCERS ‘03, Vol. 1, pp. 258-261, 2003.
[20]L. W. Pan, X. Shen, L. Lin, “Microplastic lens array fabricated by a hot intrusion process”, Microelectromechanical Systems, Journal of, Vol. 13, No. 6, pp. 1063-1071, 2004.
[21]S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system”, Optics Letters, Vol. 31, No. 20, pp. 3016-3018, 2006.
[22]W. K. Huang, C. J. Ko, F. C. Chen, “Organic selective-area patterning method for microlens array fabrication”, Microelectronic Engineering, Vol. 83, pp. 1333-1335, 2006.
[23]C. Tsou, C. Lin, “A new method for microlens fabrication by a heating encapsulated air process”, IEEE Photonics Technology Letters, Vol. 18, No. 23, pp. 2490-2492, 2006.
[24]S. Fujita, D. Ono, M. Ohshima, H. Iwata, “Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces”, Biomaterials, Vol. 29, pp. 4494-4500, 2008.
[25]Y. Huang, R. Liu, J. Lai, X. J. Yi, “Design and fabrication of a negative microlens array”, Optics & Laser Technology, Vol. 40, pp. 1047-1050, 2008.
[26]L. Che-Ping, Y. Hsiharng, C. Ching-Kong, “A new microlens array fabrication method using UV proximity printing”, Journal of Micromechanics and Microengineering, Vol. 13, pp. 748-757, 2003.
[27]J. Kuo, C. Hsieh, S. Yang, G. Lee, “An SU-8 microlens array fabricated by soft replica molding for cell counting applications”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 693-699, 2007.
[28]V. Bardinal, E. Daran, T. Leïchlé, C.Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, Carcenac, H. Ottevaere, H. Thienpont, “Fabrication and characterization of microlens arrays using a cantilever-based spotter”, OPTICS EXPRESS, Vol. 15, No. 11, pp. 6900-6907, 2007.
[29]黃堂正, “白光高分子電激發光元件結合彩色濾光片之全彩化研究”, 國立中山大學光電工程研究所, 2007.
[30]H. Y. Valenciaa, L. C. Morenob, A. M. Ardila, “Structural, electrical and optical analysis of ITO thin films prepared by sol–gel”, Microelectronics Journal, Vol. 39, pp. 1356-1357, 2008.
[31]Y. R. Do, Y. C. Kim, Y. W. Song, Y. H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure”, Journal of Applied Physics, Vol. 96, pp. 7629-7636 , 2004.
[32]C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device”, Journal of Applied Physics, Vol. 90, pp. 5048-5051, 2001.
[33]M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer”, Applied Physics Letters, Vol. 79, pp. 156-158 , 2001.
[34]V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices”, Physical Review B, Vol. 58, pp. 3730-3740, 1998.
[35]T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium”, Applied Physics Letters, Vol. 76, pp. 1243-1245, 2000.
[36]Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces”, Applied Physics Letters, Vol. 90, pp. 091102, 2007.
[37]Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. T. Lee, S. H. Kim, and Y. H. Lee, “Enhanced Light Extraction from Organic Light-Emitting Diodes with 2D SiO2/SiNx Photonic Crystals”, Adv. Mater., Vol. 15, pp. 1214-1418, 2003.
[38]S. Möller, S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays”, Journal of Applied Physics, Vol. 91, pp. 3324-3327, 2008.
[39]M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals”, Journal of Chemical Physics, Vol. 38, pp. 2042-2043, 1963.
[40]J. H. Burrououghes, D. D. C Bradley, A. R. Brown, R. N. Marks, K. MacKet, R. H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, Vol.347, pp. 539-541, 1990.
[41]S. Möller, S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays”, Journal of Applied Physics, Vol. 91, pp. 3324-3327, 2008.
[42]Y. Sun, S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography”, Journal of Applied Physics, Vol. 100, pp. 073106-073106-6, 2006.
[43]M. Wei, J. Lee, H. Lin, Y. Ho, K. Chen, C. Lin, C. Wu, H. Lin, J. Tsai, T. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array”, Journal of Optics A: Pure and Applied Optic, Vol. 10, pp. 055302, 2008.
[44]陳金鑫, 黃孝文, “OLED有機電激發光材料與元件”, 五南圖書出版社, 2005.
[45]T. K. A. Chou, K. Najafi, “3D MEMS Fabrication Using Low-temperature Wafer Bonding with Benzocyclobutene (BCB)”, The 11th International Conference on Sensors and Actuators, Munich, Germany, pp. 10-14, 2001.
[46]E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, G. T. A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching: A New Technology for Microstructrures”, Sensors and Actuators A: Physical, Vol. 52, pp. 132-139, 1995.
[47]行政院國家科學委員會精密儀器發展中心, “微機電系統技術與應用”, 2003。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.193.232
論文開放下載的時間是 校外不公開

Your IP address is 18.118.193.232
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code