Responsive image
博碩士論文 etd-0826109-175313 詳細資訊
Title page for etd-0826109-175313
論文名稱
Title
尼古丁在大鼠孤立束核中調控心臟血管之分子機制探討
The Molecular Mechanism of Nicotine on Cardiovascular Regulation in the Nucleus Tractus Solitarii of Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-10
繳交日期
Date of Submission
2009-08-26
關鍵字
Keywords
血壓、心臟血管、尼古丁
nicotine, cardiovascular, blood pressure
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
孤立束核(nucleus tractus solitarii, NTS)是感壓反射中第一個整合中樞,會將接收來自周邊感壓接受器的壓力訊號,同時和中樞神經系統中血壓調控中樞所下傳的訊號進行整合,因此孤立束核本身即扮演重要的調控角色。我們過去的研究顯示,在孤立束核中微量注射尼古丁(Nicotine)會導致血壓下降及心博舒緩的現象,由此項結果可知尼古丁在孤立束核中扮演著調控心血管系統的角色。本研究想進一步探討尼古丁在孤立束核中導致血壓下降及心跳下降的分子機制。我們使用WKY大鼠為動物模式,先微量注射一氧化氮合成酶(NOS)或ionotropic glutamate receptor抑制劑後,再觀察尼古丁所引起之心血管作用對抑制劑的反應。我們的結果發現,在孤立束核中微量注射尼古丁會使一氧化氮的產量增加。前處理calmodulin抑制劑(W-7),非特異性一氧化氮合成酶抑制劑(L-NAME)和選擇性內皮細胞一氧化氮合成酶(eNOS)抑制劑(L-NIO)顯著地抑制了尼古丁所引起的心血管作用。同樣地,尼古丁的心血管作用會被選擇性NMDA接受器抑制劑所抑制,而不是被非NMDA接受器抑制劑所抑制。但是在西方墨點法及免疫組織染色的結果並沒有顯示出eNOS的磷酸化會因為尼古丁的作用而增加。我們進一步地使用MEK抑制劑(PD98059)及特異性神經細胞一氧化氮合成酶(nNOS)抑制劑(Vinyl-L-NIO和7-NI)發現尼古丁所引起的心血管作用不會被抑制,並且Akt的磷酸化也沒有因為尼古丁的作用而增加。我們的結果顯示尼古丁是透過calmodulin與eNOS結合,導致eNOS的活性增加,進而刺激麩胺酸的釋放以達到調控血壓的作用。
Abstract
The nucleus tractus solitarii (NTS) is the primary integrative center for baroreflex. NTS not only integrates convergent information from peripheral baroreceptors and higher blood pressure (BP) control centers in CNS but itself is the site of substantial modulation. Our previous studies demonstrated that microinjection of nicotine into the NTS decrease BP and heart rate (HR), which indicates nicotine plays cardiovascular modulatory role in the NTS. However, the mechanisms how nicotine modulate cardiovascular functions in the NTS remained unclear. The aim of this study was to investigate the molecular mechanisms of nicotine-induced depressor and bradycardic effects in the NTS. Male anesthetized Wistar-Kyoto rats, with or without intra-NTS nitric oxide synthase (NOS) inhibitors or ionotropic glutamate receptor inhibitors pretreatment, received intra-NTS nicotine microinjection. BP and HR were monitored. Besides, NTS with/without nicotine microinjection were dissected and subjected to immunoblotting and nitric oxide (NO) analysis. Our results demonstrated that NO analysis study revealed intra-NTS NO production elevated after nicotine microinjection. The depressor and bradycardic effects of intra-NTS nicotine microinjection were diminished by pretreatment of calmodulin inhibitor (W7, 0.33 nmol), non-specific NOS inhibitor (L-NAME, 33 nmol) and eNOS specific inhibitor (L-NIO, 6 nmol). The cardiovascular effects of nicotine were also attenuated by NMDA receptor inhibitor (MK801, 1 nmol), not by non-NMDA receptor inhibitor (NBQX, 10 pmol). Immunoblotting and immunohistochemical studies did not revealed nicotine induced eNOSS1177 phosphorylation in NTS. Using MEK inhibitor, PD98059, and nNOS specific inhibitor,Vinyl-L-NIO and 7-NI, there were no effect on the depressor and bradycardic effects of intra-NTS nicotine microinjection, and the phosphorylation of AktT473 was not induced by nicotine. Therefore, our results indicate that nicotine-induced depressor and bradycardic responses maybe mediated through activating eNOS by calmodulin and stimulating glutamate release in the NTS.
目次 Table of Contents
Introduction+1
Specific Aims+10
Materials and Methods+11
Results+19
Discussion+27
Conclusion+33
Future Perspectives+34
References+36
Figures and Figure Lengend+43
Appendix+76
參考文獻 References
Alkondon, M., Pereira, E., Wonnacott, S., and Albuquerque, E. (1992). Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol 41, 802-808.

Biesen, T., Luttrell, L., M., L., Hawes, B., and Lefkowotz, R. (1996). Mitogenic signaling via G protein-coupled receptors. Endocr Rev 17, 698-614.

Bredt, D., and Snyder, A. (1989). Nitic oxide mediates glutamate-linked enhancement of cGMP level in the cerebellum. Proc Natl Acad Sci 86, 9030-9033.

Castro, N., and Albuquerque, E. (1995). alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J 68, 516-524.

Chen, S.Y., Wu, W.C., Tseng, C.J., Kuo, J.S., and Chai, C.Y. (1997). Involvement of non-NMDA and NMDA receptors in glutamate-induced pressor or depressor responses of the pons and medulla. Clin Exp Pharmacol Physiol 24, 46-56.

Cobb, M., Boulton, T., and Robbins, D. (1991). Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2, 965-978.

Colquhoun, L., and Patrick, J. (1997). Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharmacol 39, 191-220.

Cooper, E., Couturier, S., and Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature 350, 235-238.

Cowan, K., and Storey, K. (2003). Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206, 1107-1115.

Dajas-Bailador, F., Soliakov, L., and Wonnacott, S. (2002). Nicotine activates the extracellular signal-regulated kinase 1/2 via the alpha7 nicotinic acetylcholine receptor and protein kinase A, in SH-SY5Y cells and hippocampal neurones. J Neurochem 80, 520-530.

Dani, J. (2001). Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 49, 166-174.

Dhar, S., Nagy, F., McIntosh, J., and Sapru, H. (2000). Receptor subtypes mediating depressor responses to microinjections of nicotine into medial NTS of the rat. Am J Physiol Regul Integr Comp Physiol 279, R132-140.

Fedele, E., and Raiteri, M. (1996 ). Desensitization of AMPA receptors and AMPA-NMDA receptor interaction: an in vivo cyclic GMP microdialysis study in rat cerebellum. Br J Pharmacol 117, 1133-1138.

Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B., and Busse, R. (2001). Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88, E68-75.

Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neursci 14.

Govers, R., and Rabelink, T. (2001). Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 280, F193-206.

Gray, R., Rajan, A., Radcliffe, K., Yakehiro, M., and Dani, J. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713-716.

Guyton, A.C., Coleman, T. G., Cowley, A. W., and Manning, R. D. (1974). A system analysis approach to understanding long-range arterial blood pressure control and hypertension. Circ Res, 159-176.

Hirooka, Y., Sakai, K., Kishi, T., Ito, K., Shimokawa, H., and Takeshita, A. (2003). Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 26, 325-331.

Ho, W.Y., Lu, P.J., Hsiao, M., Hwang, H.R., Tseng, Y.C., Yen, M.H., and Tseng, C.J. (2008b). Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation 117, 773-780.

Huang, H.N., Lu, P.J., Lo, W.C., Lin, C.H., Hsiao, M., and Tseng, C.J. (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation 110, 2476-2483.

Ignarro, L., Buga, G., Wood, K., Byrns, R., and Chaudhuri, G. (1987a). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84, 9265-9269.

Ignarro, L., Byrns, R., Buga, G., and Wood, K. (1987b). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61, 866-879.

Kopp, U.C., and Buckley-Bleiler, R.L. (1989). Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension, 445-452.

Lawrence, A., and Jarrott, B. (1993). Nitric oxide increases interstitial excitatory amino acid release in the rat dorsomedial medulla oblongata. Neurosci Lett 151, 126-129.

Leslie, R.A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int, 191-212.

Lin, H.C., Wan, F.J., and Tseng, C.J. (1999). Modulation of cardiovascular effects produced by nitric oxide and ionotropic glutamate receptor interaction in the nucleus tractus solitarii of rats. Neuropharmacology 38, 935-941.

Lin, L.H., Taktakishvili, O., and Talman, W.T. (2007). Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. . Brain Res, 1171:1142-1151.

Lo, W.C., Jan, C.R., Chiang, H.T., and Tseng, C.J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension 35, 1253-1257.

Lo, W.C., Lin, H.C., Ger, L.P., Tung, C.S., and Tseng, C.J. (1997). Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension 30, 1499-1503.

Lo, W.J., Liu, H.W., Lin, H.C., Ger, L.P., Tung, C.S., and Tseng, C.J. (1996). Modulatory effects of nitric oxide on baroreflex activation in the brainstem nuclei of rats. Chin J Physiol 39, 57-62.

Loewy, A.D. (1990). Central regulation of autonomic functions. (New York, Oxford Univ. Press).

Ma, S., Abboud, F., and Felder, R. (1995). Effects of L-arginine-derived nitric oxide synthesis on neuronal activity in nucleus tractus solitarius. Am J Physiol 268, R487-R491.

Menetrey, D., and Basbaum, A.I. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol, 439-450.

Moncada, S., Palmer, R., and Higgs, E. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109-142.

Mosqueda-Garcia, R., Tseng, C.J., Appalsamy, M., and Robertson, D. (1990). Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. J Pharmacol Exp Ther, 374-381.

Neff, R., Humphrey, J., Mihalevich, M., and Mendelowitz, D. (1998). Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons. Circ Res 83, 1241-1247.

Paola, E., Vidal, M., and Nistico, G. (1991). L-glutamate evokes the release of an endothelium-derived relaxing factor-like substance from the rat nucleus tractus solitarius. J Cardiovasc Pharmacol 17, S269-S272.

Papadopolou, S., Hartmann, P., Lips, K., Kummer, W., and Haberberger, R. (2004). Nicotinic receptor mediated stimulation of NO-generation in neurons of rat thoracic dorsal root ganglia. Neurosci Lett 361, 32-35.

Post, G., and Brown, J. (1996). G protein-coupled receptors and signaling pathways regulating growth responses. Faseb J 10, 741-749.

Rees, D., Palmer, R., Schulz, R., Hodson, H., and Moncada, S. (1990). Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101, 746-752.

Reis, D.J. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation, III31-45.

Sakai, K., Hirooka, Y., Matsuo, I., Eshima, K., Shigematsu, H., Shimokawa, H., and Takeshita, A. (2000). Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36, 1023-1028.

Sato, A., and Schmidt, R.F. (1973). Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev, 916-947.

Schuman, E., and Madison, D. (1994). Nitric oxide and synaptic function. Annu Rev Neurosci 17, 153-183.

Smith, Q. (2000). Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130, 1016S-1022S.

Spyer, K.M. (1990). Central regulation (New York: Oxford Univ Press).

Spyer, K.M., Mifflin, S.W., and Withington-Wray, D.J. (1987). Organization of the autonomic nervous system: control and peripheral mechanisms. (New York: Alan R. Lisps).

Steiner, R., Heath, C., and Picciotto, M. (2007). Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. J Neurochem 103, 666-678.

Tagawa, T., Imaizumi, T., Harada, S., Endo, T., Shiramoto, M., Hirooka, Y., and Takeshita, A. (1994). Nitric oxide influences neuronal activity in the nucleus tractus solitarius of rat brainstem slices. Circ Res 75, 70-76.

Tai, M.H., Hsiao, M., Chan, J.Y., Lo, W.C., Wang, F.S., Liu, G.S., Howng, S.L., and Tseng, C.J. (2004). Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens 17, 63-70.

Talman, W., Perrone, M., and Reis, D. (1980). Evidence for L-glutamate as the neurontransmitter of baroreceptor afferent nerve fibers. Science 209, 813-815.

Toborek, M., Son, K., Pudelko, A., King-Pospisil, K., Wylegala, E., and Malecki, A. (2007). ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem 100, 279-292.

Tseng, C.J., Appalsamy, M., Robertson, D., and Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 265, 1511-1518.

Tseng, C.J., Biaggioni, I., Appalsamy, M., and Robertson, D. (1988). Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11, 191-197.

Tseng, C.J., Chou, L.L., Ger, L.P., and Tung, C.S. (1994a). Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. J Pharmacol Exp Ther 268, 558-564.

Tseng, C.J., Ger, L.P., Lin, H.C., and Tung, C.S. (1994b). The pressor effect of nicotine in the rostral ventrolateral medulla of rats. Chin J Physiol 37, 83-87.

Tseng, C.J., Liu, H.Y., Lin, H.C., Ger, L.P., Tung, C.S., and Yen, M.H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. . Hypertension, 36-42.

Vallebuona, F., and Raiter, M. (1995). Age-related changes in the NMDA receptor/nitric oxide/cGMP pathway in the hippocapus and cerebellum of freely-moving rats subjected to transcerebral microdialysis. Eur J Neurosci 7, 694-701.

Vincent, S., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755-784.

Waki, H., Murphy, D., Yao, S., Kasparov, S., and Paton, J. (2006). Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 48, 644-650.

Wang, W., Brandle, M., and Zucker, I.H. (1993). Acute alcohol administration stimulates baroreceptor discharge in the dog. Hypertension 21, 687-694.

Wiki, H., Kasparov, S., Wong, L., Murphy, D., Shimizu, T., and Paton, J. (2003). Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Phsiol 546, 233-242.

Zhao, R., Chen, H., and Sharp, B. (2007). Nicotine-induced norepinephrine release in hypothalamic paraventricular nucleus and amygdala is mediated by N-methyl-D-aspartate receptors and nitric oxide in the nucleus tractus solitarius. J Pharmacol Exp Ther 320, 837-844.

Zoli, M., Lena, C., Picciotto, M., and Changeux, J. (1998). Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J Neurosci 18, 4461-4472.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.8.110
論文開放下載的時間是 校外不公開

Your IP address is 18.116.8.110
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code