Responsive image
博碩士論文 etd-0826110-120317 詳細資訊
Title page for etd-0826110-120317
論文名稱
Title
使用領航訊號輔助之正交分頻多工系統中不傳旁帶資訊之 降低峰均值功率比技術
A PAPR Reduction Scheme Without Side Information in Pilot-Aided OFDM Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-08-26
關鍵字
Keywords
正交分頻多工、旁帶資訊、選擇性映射、峰均值功率比
side information, selected mapping (SLM), Orthogonal frequency division multiplexing (OFDM), peak-to-average power ratio (PAPR)
統計
Statistics
本論文已被瀏覽 5740 次,被下載 1
The thesis/dissertation has been browsed 5740 times, has been downloaded 1 times.
中文摘要
過高的峰均值功率比(Peak to Average Power Ratio, PAPR)是正交分頻多工
(Orthogonal Frequency Division Multiplexing, OFDM)系統中的一個嚴重問題。
在眾多文獻所提出的解決方法之中,選擇性映射(Selected Mapping, SLM)是最吸
引人的一項技術,因為它降低PAPR 的效能非常顯著,而且不會造成子載波
(Subcarrier)的振幅失真。但是由於選擇性映射方法必須使用大量的反快速富麗
葉轉換(Inverse Fast Fourier Transform, IFFT)來產生候選訊號,所以選擇性映射
方法的運算複雜度相當的高。此外,選擇性映射技術在訊號傳輸時必須加上旁帶
資訊(Side Information)讓接收端知道傳送端候選訊號的相關資訊,更是會降低系
統的資料傳送速率。為了同時解決複雜度與頻寬使用效率的問題,我們將基於
[C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for
PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5,
pp. 2916–2921, May 2010]這篇論文所提出的低複雜度架構III,在有領航訊號輔
助的OFDM 系統提出不用傳送旁帶資訊的方法。在本論文之中,我們藉由電腦
模擬得知此本論文所提出的方法,其位元錯誤率(Bit Error Rate, BER)效能與傳
統選擇性映射技術在已知旁帶資訊時的效能非常接近,因此我們所提出的方法不
但有低複雜度以及改進頻寬使用效率的優點,位元錯誤率的效能也很接近完美。
Abstract
High peak to average power ratio (PAPR) is one of the major drawbacks in
orthogonal frequency division multiplexing (OFDM) systems. In recently years,
various methods have been proposed to reduce the PAPR performance. The
selected mapping (SLM) scheme is perhaps the most popular one because it
provides outstanding PAPR reduction performance. In addition, the subcarrier
magnitude remains the same in the SLM scheme. However, there are two major
shortcomings in the SLM scheme. First of all, it requires a number of inverse fast
Fourier transforms (IFFTs) to produce candidate signals, dramatically
increasing the computational complexity. In addition, side information has to be
transmitted to the receiver to indicate the candidate signal that results in the best
PAPR, leading to the decrease in bandwidth utilization. To overcome these two
drawbacks, this thesis proposes a novel SLM scheme that does not need side
information. The proposed scheme is based on a low complexity SLM scheme
[C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for
PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5,
pp. 2916–2921, May 2010] in pilot-aided OFDM system. Simulation experiments
are conducted to verify the performance of the proposed scheme. It is shown that
the bit error rate (BER) performance of the proposed scheme is very similar to
that of the traditional SLM scheme with perfect knowledge of the side
information. Therefore, the proposed scheme not only has the advantages of low
complexity and high bandwidth utilization, but also has a superior BER
performance.
目次 Table of Contents
致謝............................................................................................................................... I
中文摘要....................................................................................................................... II
Abstract ........................................................................................................................ III
第一章 導論.................................................................................................................. 1
1.1 研究動機......................................................................................................... 2
1.2 論文架構......................................................................................................... 2
第二章 正交分頻多工系統與峰均值功率比.............................................................. 3
2.1 正交分頻多工系統的架構............................................................................. 3
2.2 領航訊號輔助之正交分頻多工系統架構..................................................... 5
2.3 正交分頻多工訊號的峰均值功率比............................................................. 6
第三章 常見降低PAPR 不傳旁帶資訊傳的方法 .................................................... 10
3.1 傳統SLM 架構 ............................................................................................ 10
3.2 傳統PTS 架構 .............................................................................................. 11
3.3 傳統PTS 和SLM 不傳旁帶資訊的方法 ................................................... 12
第四章 不傳旁帶資訊之系統架構............................................................................ 16
4.1 低複雜度傳送端架構................................................................................... 16
4.2 Propose Scheme I 候選訊號少無旁帶訊號降低PAPR ............................... 21
4.3 Propose Scheme II 多候選訊號下無旁帶訊號降低PAPR .......................... 26
第五章 PAPR 效能與BER、DER 模擬分析 ........................................................... 31
5.1 候選訊號少效能分析................................................................................... 31
5.2 多候選訊號效能分析................................................................................... 35
第六章 結論................................................................................................................ 39
參考文獻...................................................................................................................... 40
中英對照表.................................................................................................................. 45
縮寫對照表.................................................................................................................. 49
參考文獻 References
[1] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std.
802.11a-1999, Sep. 1999.
[2] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std
802.16-2004, Oct. 2004.
[3] Digital video broadcasting (DVB): Framing structure, channel coding and
modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[4] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable
and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[5] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction
techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2,
pp. 56–65, Apr. 2005.
[6] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped
multicarrier signals,” in Proc. IEEE PIMRC’95, Toronto, Canada, Sep. 1995, pp.
71–75.
[7] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of
OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, May 1998.
[8] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes
with low peak-to-average power ratios,” IEEE Trans. Info. Theory, vol. 46, no. 6,
pp. 1974–1987, Sep. 2000.
[9] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the
peak-to-average power ratio in multicarrier communication,” IEEE Trans.
Commun., vol. 48, no. 1, pp. 37–44, Jan. 2000.
[10] K.Yang and S. Chang, “Peak-to-average power control in OFDM using standard
arrays of linear block codes,” IEEE. Commun. Lett., vol. 7, no. 4, pp. 174–176,
Apr. 2003.
[11] T. Wattanasuwakull and W. Benjapolakul, “PAPR reduction for OFDM
transmission by using a method of tone reservation and tone injection,” in Proc.
2005 Inf., Commun. Signal Process., Dec. 2005, pp. 273–277.
[12] S. S. Yoo, S. Yoon, S. Y. Kim, and I. Song, “A novel PAPR reduction scheme
for OFDM systems: Selective mapping of partial tones (SMOPT),” IEEE Trans.
Consum. Electron., vol. 52, no. 1, pp. 40–43, Feb. 2006.
[13] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for
partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp.
333–338, Sep. 1999.
[14] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT
method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol.
56, no. 3, pp. 1161–1166, Mar. 2008.
[15] C. Tellambura, “Improved phase factor computation for the PAR reduction of an
OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, Apr.
2001.
[16] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM
signal by use of PTS with low computational complexity,” IEEE Trans.
Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[17] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques
for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no.
10, pp. 680–683, Oct. 2007.
[18] S. W. Kim, H. S. H. Byeon, J. K. Kim, and H.-G. Ryu, “An SLM-based real-time
PAPR reduction method using dummy sequence insertion in the OFDM
communication,” in Proc. IEEE. Int. Conf. Inform. Commun. Signal Process.
(ICICS 2005), Bangkok, Thailand, Oct. 2005, pp. 258–262.
[19] M. Breiling, S. H. Muller, and J. B. Huber, “SLM peak-power reduction with
explicit side information,” IEEE. Commun. Lett., vol. 5, no. 6, pp. 239–241, Jun.
2001.
[20] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with
low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast.,
vol. 53, no. 4, pp. 804–808, Dec. 2007.
[21] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme
with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no.
2, pp. 93–96, Feb. 2005.
[22] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR
reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp.
335–341, Sep. 2004.
[23] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active
constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sep.
2003.
[24] A. Saul, “Generalized active constellation extension for peak reduction in
OFDM systems,” in Proc. IEEE Int. Conf. Commun. (ICC 2005), Seoul, Korea,
Sep. 2005, vol. 3, pp. 1974–1979.
[25] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes
for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no.
5, pp. 2916–2921, May 2010.
[26] A. Ghassemi and T. A. Gulliver, “Partial selective mapping OFDM with low
complexity IFFTs,” IEEE Commun. Lett., vol. 12, no. 1, pp. 4–6, Jan. 2008.
[27] L. Yang, K. K. Soo, Y. M. Siu, and S. Q. Li , “A low complexity selected
mapping scheme by use of time domain sequence superposition technique for
PAPR reduction in OFDM system,” IEEE Trans. Broadcast., vol. 54, no. 4, pp.
821–824, Dec. 2008.
[28] D.-W. Lim, J.-S. No, C.-W Lim, and H. Chung, “A new SLM OFDM scheme
with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no.
2, pp. 93–96, Feb. 2005.
[29] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for
peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal
Process., vol. 53, no. 12, pp. 4652–4660, Dec. 2005.
[30] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power reduction of
OFDM signals without side information,” IEEE Trans. Wireless Commun., vol. 4,
no. 5, pp. 2006–2013, Sep. 2005.
[31] Y. Zhou and T. Jiang, “A novel multi-points square mapping combined with PTS
to reduce PAPR of OFDM signals without side information,” IEEE Trans.
Broadcast., vol. 55, no. 4, pp. 831–835, Dec. 2009.
[32] S. H. Han, J. M. Cioffi, and J. H. Lee, “On the use of hexagonal constellation for
peak-to-average power ratio reduction of an OFDM signal,” IEEE Trans. Wireless
Commun., vol. 7, no. 3, pp. 781–786, Mar. 2008.
[33] N. Chen and G. T. Zhou, “Peak-to-average power ratio reduction in OFDM with
blind selected pilot tone modulation,” IEEE Trans. Wireless Commun., vol. 5, no.
8, pp. 2210–2216, Aug. 2006.
[34] S. Y. L. Goff, S. S. Al-Samahi, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif,
“Selected mapping without side information for PAPR reduction in OFDM,” IEEE
Trans. Wireless Commun., vol. 8, no. 7, pp. 3320–3325, Jul. 2009.
[35] T. Maruyama, K. Maruta, J. Mashino, and M. Nakatsugawa, “Control
information transmission without resource consumption for PAPR reduction of
OFDM signal,” Elect. Lett., vol. 45, no. 8 , pp. 406–408, Apr. 2009.
[36] Z. Yang, H. Fang, and C. Pan, “ACE with frame interleaving scheme to reduce
peak-to-average power ratio in OFDM systems,” IEEE Trans. Broadcast., vol. 51,
no. 4, pp. 571–575, Dec. 2005.
[37] S. B. Slimane, “Reducing the peak-to-average power ratio of OFDM signals
through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686–695, Mar.
2007.
[38] X. Zhu, G. Zhu, and T. Jiang, “Reducing the peak-to-average power ratio using
unitary matrix transformation,” IET Commun., vol. 3, no. 2, pp. 161–171, 2009.
[39] H. Lee, and M. P. Fitz, “Unitary peak power reduction in multiple transmit
antennas,” IEEE Trans. Commun., vol. 56, no. 2, pp. 234–244, Feb. 2008.
[40] C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with
BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May 2001.
[41] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for
block transmissions with application to wireless OFDM,” IEEE Trans. Commun.,
vol. 50, pp. 2113–2123, Dec. 2002.
[42] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in
OFDM signals,” IEEE Trans. Commun., vol. 49, no. 2, pp. 282–289, Feb. 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.221.163
論文開放下載的時間是 校外不公開

Your IP address is 3.137.221.163
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code