Responsive image
博碩士論文 etd-0826110-162830 詳細資訊
Title page for etd-0826110-162830
論文名稱
Title
在多重路徑通道環境下考慮IQ不平衡效應之無冗餘資料空時區塊編碼的多輸入多輸出正交分頻多工系統設計
CP-Free Space-Time Block Coded MIMO-OFDM System Design Under IQ-Imbalance in Multipath Channel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-02
繳交日期
Date of Submission
2010-08-26
關鍵字
Keywords
正交分頻多工、多輸入多輸出、空時區塊編碼、時變多重路徑通道、循環前綴碼、適應性濾波器、峰均值功率比、IQ不平衡
Multiple-Input Multiple-Output, Orthogonal Frequency Division Multiplexing, Space-Time Block Code, Time-Variant Multipath Channel, Adaptive Filter, IQ Imbalance, Cyclic Prefix, Peak-to-average power ratio
統計
Statistics
本論文已被瀏覽 5746 次,被下載 1238
The thesis/dissertation has been browsed 5746 times, has been downloaded 1238 times.
中文摘要
一般來說,正交分頻多工系統常常藉由加入循環前綴碼來預防時變多重路徑通道間的訊號干擾。然而,循環前綴碼的出現會大大地降低有效的資料傳輸速率,因此,現在很多人開始研究不加循環前綴碼的正交分頻多工系統,而且延伸到不加入循環前綴碼的多輸入多輸出的正交分頻多工系統。但是一般這樣的系統會受到天線數量的限制,在這樣的系統下,接收天線的數量必須大於傳輸天線的數量才可以運作。因此,在這篇論文裡,我們一開始介紹加入空時區塊編碼的多輸入多輸出之正交分頻多工系統架構,而且緊接著,我們會證明在我們提出的架構下,接收天線數量是可以跟傳輸天線數量相等,只要接收天線大於一根就好,也就是多輸入多輸出系統的最基本要求。這樣的架構是有利於最近討論火熱的行動通訊規格3GPP LTE;他的規格就是要求多輸入多輸出的天線為2對2或者是4對4這樣的接收端與傳輸端的天線相等。這篇論文我們也在考慮了傳送端發射器功率下去降低峰均值功率比,在接收端的部份,我們又另外考慮IQ不平衡下對系統的影響,我們分別用了適應性Volterra預先失真的技術和加入了功率估測的盲閉式適應性補償器來解決上述的問題。在IQ不平衡補償器後面的等化器的部分,我們使用一個GSC架構的適應性濾波器來做干擾消除,而且我們也使用PA的架構來更進一步降低等化器的複雜度。如模擬結果所示,在加入了預失真器和IQ不平衡補償器之下,我們建議的無循環前綴碼的空時區塊編碼的多輸入多輸出正交分頻多工系統的效能和一般有加入循環前綴碼的效能是很接近的,這也表示說我們所提出的方法是可行的。
Abstract
Orthogonal frequency division multiplexing (OFDM) systems with cyclic prefix (CP) can be used to protect signal from the time-variant multipath channel induced distortions. However, the presence of CP could greatly decrease the effective data rate, thus many recent research works have been focused on the multiple-input multiple-output (MIMO) OFDM systems without CP (CP-free), equipped with the space-time block codes (ST-BC). The constraint of the conventional MIMO-OFDM (without using the ST-BC) system is that the number of receive-antenna has to be greater than the transmit-antenna. In this thesis, we first consider the ST-BC MIMO-OFDM system and show that the above-mentioned constraint can be removed, such that the condition become that the receive antenna should be greater than one, that is the basic requirement for MIMO system. It is particular useful and confirm to the recently specification, e.g., 3GPP LTE (Long Term Evolution) where the system deploy the 2×2 or 4×4 antennas systems. This thesis also considers the effects of peak-to-average power ratio (PAPR) in the transmitter and In-phase/ Quadrature-phase (IQ) imbalance in the receiver, and solves them by using the adaptive Volterra predistorter and blind adaptive filtering approach of the nonlinear parameters estimation and compensation, along with the power measurement, respectively. After the compensator of IQ imbalance in the receiver, an equalizer under the framework of generalized sidelobe canceller (GSC) is derived for interference suppression. To further reduce the complexity of receiver implementation, the partially adaptive (PA) scheme is applied by exploiting the structural information of the signal and interference signature matrices. As demonstrated from computer simulation results, the performance of the proposed CP-free ST-BC MIMO-OFDM receiver is very similar to that obtained by the conventional CP-based ST-BC MIMO-OFDM system under either the predistortion or compensation scenario.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
1 Introduction…………...................................................1
2 Model Description of the ST-BC MIMO-OFDM Systems and IQ Imbalance…………………………..5
2.1 Introduction…………………………………………5
2.2 CP-based ST-BC MIMO OFDM Systems……….7
2.3 IQ Imbalance……………………………………...12
2.4 Direct-Conversion (Zero-IF) Receiver………….15
3 Transceiver Design of CP-Free ST-BC MIMO-OFDM Systems under IQ-Imbalance……………………….17
3.1 Introduction………………………………………..17
3.2 Transmitter of ST-BC MIMO-OFDM Systems….20
3.2.1 CP-free ST-BC MIMO OFDM System…………20
3.2.2 Transmitter of ST-BC MIMO-OFDM Systems with Volterra-based Predistorter…………………………..23
3.3 Receiver Design for the ST-BC MIMO-OFDM Systems………………...................................................26
3.3.1 IQ Blind Adaptive Compensation with Power Measurement….............................................................26
3.3.2 Equalization with PA-GSC Configuration………………….....................................31
4 Computer Simulations………………….................37
5 Conclusions…………………………………...........43
Appendix A Derivation of PA-GSC…………….........45
References……………………………………….........48
參考文獻 References
[1] R. V. Nee and R. Prasad, OFDM FOR WIRELESS MULTIMEDIA COMMUNICATIONS, Artech House, 1999.
[2] X. D. Wang and G.B. Giannakis, “Wireless Multicarrier Communications,” IEEE Signal Processing Magazine, vol.17, no.3, pp.29–48, May 2000.
[3] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. on Commun. vol. 50, No. 12, pp.2136-2148, Dec. 2002.
[4] Z. Wang, X. Ma, and G.B. Giannakis, “OFDM or single-carrier block transmissions?” IEEE Trans. Commun., vol.52, no.3, pp.380-394, March 2004.
[5] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proceeding of The IEEE, vol. 92, no.2, pp.271-294, Feb. 2004.
[6] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., pp.1451–1458, Oct.1998.
[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol.45, no.5, pp.1456- 1467, 1999.
[8] G. Ganesan and P. Stoica, “Space-time block codes: A maximum SNR approach,” IEEE Trans. Inf. Theory, vol.47, no.4, pp.1650–1656, May 2001.
[9] Y. Rong, S. Shahbazpanahi, and A. B. Gershman, “Robust linear receivers for space-time block coded multi-access MIMO systems with imperfect channel state information,” IEEE Trans. Signal Process., vol.53, no.8, pt.2, pp.3081- 3090, Aug.2005.
[10] C.-Y. Lin, J.-Y. Wu, and T.-S. Lee, “A Near-Optimal Low-Complexity Transceiver for CP-Free Multi-Antenna OFDM Systems.” IEICE Trans. Commun., vol. E89–B, no.1, pp.88-99, Jan. 2006
[11] C. Y. Lin and T. S. Lee, “An efficient interference cancellation scheme for CP-free MIMO-OFDM systems,” in Proc. IEEE VTC-Fall 2005, Dallas, TX, vol.1, pp.439–443, Sep. 2005.
[12] C. Y. Lin, J. Y. Wu, and T. S. Lee, “Robust constrained-optimization based linear receiver for high-rate MIMO-OFDM against channel estimation errors,” IEEE Trans. Signal Processing, vol.55, no.6, pp.2628-2645, June 2007.
[13] C. Y. Lin, J. Y. Wu, and T. S. Lee, “Robust receiver design for MIMO single-carrier block transmission over time-varying dispersive channels against imperfect channel knowledge,” IEEE Tran. Wireless Communications, Oct. 2008.
[14] S. J. Chern, J. Y. Chen, C. W. Wu, “Novel Frequency-Domain DFE Equalizer with Oblique Projection for CP-Free Space-Time Block Coded MIMO-OFDM Systems,’’ ISPACS, WP1-A-2, pp.541-545, December 2009.
[15] S. Haykin, Adaptive filter theory, 4th edition, NJ: Prentice Hall, 2002.
[16] J.S. Goldstein and I.S. Reed, “Subspace selection for partially adaptive sensor array processing,” IEEE Trans. Aerosp. Electron. Syst., vol.33, no.2, pp.539–544, April 1997.
[17] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, NY, 1990.
[18] J. Li and J. Ilow, “A Least-Squares Volterra Predistorter for Compensation of Non-Linear Effects with Memory in OFDM Transmitters,” in Proc. 3rd Annual CNSR Conference, CNSR2005, Halifax, NS. Canada, May 2005, pp. 197 – 202.
[19] C. Eun and E.J. Powers, “A New Volterra Predistorter Based on the Indirect Learning Architecture,” IEEE Trans. Signal Processing, vol.45, pp.223-227, Jan. 1997.
[20] Martin Schetzen, “Theory of pth-Order Inverses of Nonlinear Systems,” IEEE Trans. Circuits and Systems, vol.CAS-23, no.5, pp.285-291, May 1976.
[21] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Trans. Commun., vol.COM-29, no.11, pp.1715-1720, Nov. 1981.
[22] Behzad Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 428–435, June 1997.
[23] Jan. Tubbax, B. Cˆome, L. Van der Perre, S. Donnay, and M. Engels. “IQ imbalance compensation for OFDM systems”, IEEE International Conference on Communications ICC, 5:3403–3407, May 2003.
[24] C. H. Sun, S. J. Chern, C. Y. Huang, “Blind Adaptive Compensation for Gain/Phase Imbalance and DC Offset in Quadrature Demodulator with Power Measurement,’’ IEICE Trans. Communication, vol. E87-B, no.4, pp.891-898, April 2004.
[25] S. Zhou, B. Muquet, and G. B. Giannakis, “Subspace-based (semi-) blind channel estimation for block precoded space-time OFDM,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1215–1228, May 2002
[26] Z. Liu, G. B. Giannakis, S. Barbarossa, and A. Scaglione, “Transmit antennae space-time block coding for generalized OFDM in the presence of unknown multipath,” IEEE J. Sel. Areas Commun., vol.19, no.7, pp.1352- 1364, Jul. 2001.
[27] Abidi, A.A., “Direct-conversion radio transceivers for digital Communications,” IEEE Journal Solid-State Circuits, vol. 30, Issue: 12, Dec. 1995.
[28] Bateman, A.; Haines, D.M., “Direct conversion transceiver design for compact low-cost portable mobile radio terminals,” in Proc. IEEE Veh. Technol. Conf., pp. 57-62, May 1989.
[29] Deepaknath Tandur, and Marc Moonen, “Joint Adaptive Compensation of transmitter and Receiver IQ Imbalance Under Carrier Frequency Offset in OFDM-Based Systems,” IEEE Trans. Signal Process., vol.55, no.11, pp.5246-5252, November 2007.
[30] Shao-Ping Hung, “Effect Compensation of Both IQ Imbalance and Frequency-Offset,” Master’s thesis, National Cheng Kung University, June 2004.
[31] Chih-Wei Wu, “Novel Frequency Domain DFE with Oblique Projection for CP Free ST-BC MIMO OFDM System,” Master’s thesis, National Sun Yat-Sen University, June 2009.
[32] IEEE Std 802.11a-1999-Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band 1999.
[33] Li Zhang, Mathini, Sellathurai, Jonathon and Chambers, “An Iterative Multiuser Receiver for Space-Time Coded MIMO-OFDM System”, Centre of Digital Signal Processing, Cardiff University, Queen’s Buildings, Cardiff CF24 3AA, Wales UK
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code