Responsive image
博碩士論文 etd-0826111-104605 詳細資訊
Title page for etd-0826111-104605
論文名稱
Title
一、霧點萃取法結合化學蒸氣生成感應耦合電漿質譜儀於水樣中微量鎘、銻及汞分析之應用 二、化學蒸氣生成技術及薄膜去溶劑系統結合感應耦合電漿質譜儀於酒中微量元素分析之應用
一、Determination of Cd, Sb and Hg in Water Samples by CVG-ICP-MS after Cloud Point Extraction 二、Determination of trace elements in Wine Samples by Chemical Vapor generation ICP-MS and Membrane Desolvation ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-23
繳交日期
Date of Submission
2011-08-26
關鍵字
Keywords
霧點萃取法、薄膜去溶劑系統、感應耦合電漿質譜儀、化學蒸氣生成法
ICP-MS, CPE
統計
Statistics
本論文已被瀏覽 5902 次,被下載 455
The thesis/dissertation has been browsed 5902 times, has been downloaded 455 times.
中文摘要
霧點萃取法( Cloud Point Extraction,CPE )是利用螯合試劑先與分析物結合,再以界面活性劑進行濃縮萃取的方法,此方法可以降低偵測極限並將基質分離,避免環境水樣中高濃度的鹽類基質對分析物造成光譜及非光譜性干擾。化學蒸氣生成法( Chemical Vapor Generation,CVG )是一種廣泛應用在原子光譜及質譜分析的進樣方式,此方法利用氣體生成技術將分析物與溶液中之基質分離,具有增加分析物的樣品傳輸效率、提升靈敏度、降低偵測極限及減輕光譜干擾等優點。本研究將結合蒸氣生成法與感應耦合電漿質譜儀( Inductively coupled plasma mass spectrometry,ICP-MS )對環境水樣中鎘、銻、汞與酒樣中多元素分析之應用。
研究中分為兩部分:第一部份為霧點萃取法結合化學蒸氣生成感應耦合電漿質譜儀偵測環境水樣中之鎘、銻及汞微量元素。實驗中霧點萃取條件,包含萃取溶液pH值、螯合試劑APDC與界面活性劑Triton X-114濃度、萃取時間及溫度等進行探討,以最適化所得界面活性層以流動式注入化學蒸氣生成導入ICP-MS偵測;另外在蒸氣生成系統的最適化探討條件,包含載體溶液中增益試劑thiourea、Co(II)與HCl濃度、還原試劑NaBH4濃度、反應試劑流速及混合線圈長度等對分析物訊號的影響。以CVG做為進樣裝置能有效的將Mo與Zr基質分離,減低氧化物及氫氧化物對Cd與Sb的干擾。實驗中將使用基質匹配檢量線(Matrix-matched calibration)與同位素稀釋法( Isotope dilution )進行定量,鎘、銻及汞的偵測極限分別為2.0、0.6及5.0 ng L-1。最後將分析河水標準參考樣品NRCC SLRS-4及河海口水標準參考樣品NRCC SLEW-2、愛河河水、澄清湖湖水、中山大學自來水及礦泉水樣品來驗證此方法的實用性。
第二部分研究利用蒸氣生成系統及薄膜去溶劑系統分別結合ICP-MS來偵測酒類樣品中微量元素。由於酒樣品以傳統氣動式霧化器直接進樣,需考量高揮發性物質是否造成電漿不穩定或燃燒不完全的碳基質沉積於取樣錐,進而影響分析結果。本實驗以CVG-ICP-MS來偵測酒樣中的微量元素,不須經繁雜的樣品前處理,以流動式注入方式同時偵測酒樣中銻、汞及鉛三種元素,研究中以乙醇為模擬基質,探討CVG-ICP-MS系統條件之最適化,包括樣品和載體溶液中HCl與thiourea、NaBH4及氧化劑K3Fe(CN)6濃度等。在最適化條件下於乙醇基質中添加1.0 μg L-1 銻、汞及鉛元素標準溶液以測定訊號再現性,所測得之分析訊號( n=7 )波峰面積及波峰高度相對標準偏差( RSD )皆小於3.9%以下;另外在Aridus去溶劑裝置尋找系統之最適化,包含霧化氣體流速、掃除氣體氣體流速、氮氣氣體流速、噴霧腔與薄膜溫度。由於樣品基質差異造成標準添加法與水溶液校正曲線法靈敏度不同,因此本實驗蒸氣生成法以標準添加法及同位素稀釋法進行定量,銻、汞及鉛的偵測極限各為1.0、8.0及13 ng L-1。最後,將所開法之兩方法應用於市售啤酒、紅酒、米酒及高粱酒,並將其結果與薄膜去溶劑裝置Aridus-ICP-MS定量比較,進一步驗證此方法之準確性與可行性。
Abstract
none
目次 Table of Contents
目錄
論文提要 .......................................................................................................................Ⅰ
謝誌 .............................................................................................................................. III
目錄 .............................................................................................................................. IV
圖表目錄 ......................................................................................................................VII

第一章 霧點萃取法結合化學蒸氣生成感應耦合電漿質譜儀於水樣中微量鎘、銻及汞分析之應用
壹、 前言 ........................................................................................................................ 1
一、 研究背景.......................................................................................................... 1
二、 霧點萃取法( Cloud point extraction,CPE)簡介…........................................ 2
三、 化學蒸氣生成( Chemical vapor generation,CVG )簡介............................... 4
四、 同位素稀釋( Isotope dilution,ID )簡介 ....................................................... 5
貳、 實驗部分 ................................................................................................................ 7
一、 儀器裝置 ........................................................................................................ 7
二、 試劑藥品和溶液配製 .................................................................................... 8
参、 實驗過程 .............................................................................................................. 12
一、 霧點萃取各參數之探討 .............................................................................. 12
二、 化學蒸氣生成系統各參數之探討 .............................................................. 17
三、 光譜干擾探討 .............................................................................................. 20
四、 校正曲現及偵測極限估計 .......................................................................... 20
五、 真實樣品之霧點萃取及分析 ...................................................................... 20
肆、 結果與討論 .......................................................................................................... 21
一、 霧點萃取各參數之探討 .............................................................................. 21
二、 化學蒸氣生成系統各參數之探討 .............................................................. 31
三、 光譜干擾探討 .............................................................................................. 44
四、 校正曲線及偵測極限估計 .......................................................................... 50
五、 真實樣品之霧點萃取及分析........................................................................ 50
伍、 結論 ..................................................................................................................... 58
陸、 參考文獻 .............................................................................................................. 59

第二章、化學蒸氣生成技術及薄膜去溶劑系統結合感應耦合電漿質譜儀於酒中微
量元素分析之應用
壹、 前言 ...................................................................................................................... 62
一、 研究背景........................................................................................................ 62
貳、 實驗部分 .............................................................................................................. 63
一、 儀器裝置 ...................................................................................................... 63
二、 去溶劑進樣系統簡介 .................................................................................. 64
三、 試劑藥品和溶液配製 .................................................................................. 65
参、 實驗過程................................................................................................................ 70
一、 化學蒸氣生成系統各參數之探討 .............................................................. 70
二、 化學蒸氣生成校正曲線及偵測極限估計 …………................................ 72
三、 以蒸氣生成法偵測真實樣品之及分析 ...................................................... 73
四、 Aridus 薄膜去溶劑系統各參數之探討 ..................................................... 73
五、 薄膜去溶劑系統之光譜干擾探討及偵測極限估計 .................................. 74
六、 以薄膜去溶劑系統分析真實樣品及結果比較 .......................................... 74
肆、 結果與討論............................................................................................................ 75
一、 化學蒸氣生成系統各參數之探討 .............................................................. 75
二、 化學蒸氣生成校正曲線及偵測極限估計.................................................... 88
三、 以蒸氣生成法偵測真實樣品之及分析 ...................................................... 93
四、 Aridus 薄膜去溶劑系統各參數之探討 ..................................................... 96
五、 薄膜去溶劑系統之光譜干擾探討及偵測極限估計 ................................ 112
六、 以薄膜去溶劑系統分析真實樣品及結果比較 ........................................ 118
伍、 結論 .................................................................................................................... 122
陸、 附錄 ……............................................................................................................ 123
柒、 參考文獻 ............................................................................................................ 125

圖表目錄

第一章 霧點萃取法結合化學蒸氣生成感應耦合電漿質譜儀於水樣中微量鎘、銻
及汞分析之應用

圖1-1、霧點萃取法流程圖 ............................................................................................ 3
圖1-2、不同微胞形式的界面活性劑 ............................................................................ 3
圖1-3、流動注入化學蒸氣生成系統裝置圖 ................................................................ 9
圖1-4、本實驗所使用的試劑(a)APDC與(b)Triton X-114 .......................................... 15
圖1-5、APDC與金屬離子螯合錯合物結構圖 ........................................................... 16
圖1-6、界面活性劑形成微胞萃取之結構示意圖 ...................................................... 16
圖1-7、pH值對各元素萃取效率的影響 ..................................................................... 22
圖1-8、螯合試劑APDC濃度對各元素萃取效率的影響 ........................................... 23
圖1-9、界面活性劑Triton X-114濃度對各元素萃取效率的影響 ............................ 24
圖1-10、微波萃取溫度對各元素萃取效率的影響 .................................................... 26
圖1-11、微波萃取時間對各元素萃取效率的影響 ..................................................... 27
圖1-12、實驗之霧點萃取流程圖 ................................................................................ 30
圖1-13、樣品及載體溶液中thiourea濃度對Cd、Sb及Hg元素(a)、(b)分析物波峰面積訊號及(c)波峰高度S/B的影響 ........................................................... 33
圖1-14、樣品及載體溶液中Co(II)濃度對Cd、Sb及Hg元素(a)、(b)分析物波峰面積訊號及(c)波峰高度S/B的影響 …........……………............................... 34
圖1-15、還原試劑NaBH4濃度對Cd、Sb及Hg元素(a)、(b)分析物波峰面積訊號及(c)波峰高度S/B的影響 …...….……………………............................... 36
圖1-16、載體溶液中HCl濃度對Cd、Sb及Hg元素(a)、(b)分析物波峰面積訊號及(c)波峰高度S/B的影響 …....…..…..……............................................... 37

圖1-17、反應試劑流速對Cd、Sb及Hg元素(a)波峰面積相對訊號(b)波峰高度S/B的影響 .......................................................................................................... 38
圖1-18、CVG-ICP-MS系統中,電漿功率對Cd、Sb及Hg元素(a)波峰面積相對訊號(b)波峰高度S/B的影響 …....................................................................... 40
圖1-19、CVG-ICP-MS系統中,載送氣體流速對Cd、Sb及Hg元素(a)波峰面積相對訊號(b)波峰高度S/B的影響 ……........................................................... 41
圖1-20、CVG-ICP-MS系統中,混合線圈長度對Cd、Sb及Hg元素(a)波峰面積相對訊號(b)波峰高度S/B的影響 ................................................................... 42
圖1-21、比較(a)Cross-flow nebulizer with Scott-type spray chamber氣動式霧化器以及(b)Flow injection chemical vapor generation流動式注入化學蒸氣生成系統,觀察基質中Mo及Zr對Cd、Sb之干擾程度 ....................................... 48
圖1-22、河水標準參考樣品SLRS-4之蒸氣生成訊號圖 ……................................... 56
圖1-23、礦泉水之蒸氣生成訊號圖 …..…..……….................................................... 57


表1-1、鎘、銻及汞同位素之含量比 ............................................................................. 11
表1-2、以霧點萃取法對不同金屬進行霧點萃取 ...................................................... 13
表1-3、以最適化霧點萃取條件Sb(III)、Sb(V)及Sb(III)與Sb(V)的溶液進行霧點萃取之結果 ........................................................................................................ 28
表1-4、以最適化霧點萃取條件對Hg、MeHg及Hg與MeHg的溶液進行霧點萃取之結果 ............................................................................................................ 28
表1-5、添加干擾離子濃度對分析物萃取效率影響 .................................................. 29
表1-6、不同增益試劑對Cd、Sb及Hg訊號之比較 ................................................... 32
表1-7、Cd、Sb與Hg分析訊號之再現性 ………........................................................ 43
表1-8、CVG-ICP-MS最適化條件 ............................................................................... 45
表1-9、不同預濃縮倍數( Preconcentration factor,PCF )對分析訊號影響 ……....... 46
表1-10、各偵測同位素之自然界含量與質量干擾 .................................................... 47
表1-11、標準參考水樣品中Mo、Cd及Sb之含量 ..................................................... 47
表1-12、多原子離子對Cd、Sb訊號及同位素比測量影響 ........................................ 49
表1-13、Cd、Sb及Hg基質匹配校正曲線及偵測極限 .............................................. 51
表1-14、以基質匹配校正曲線法與同位素稀釋法定量標準參考樣品NRCC SLRS-4及SLEW-2 .................................................................................................... 53
表1-15、以霧點萃取法結合CVG-ICP-MS定量礦泉水、中山大學自來水、澄清湖湖水與愛河河水樣品中Cd、Sb及Hg之濃度 ............................................ 54
表1-16、以基質匹配校正曲線法與同位素稀釋法對礦泉水、中山大學自來水、澄清湖湖水與愛河河水樣品進行定量 .......................................................... 55

第二章 化學蒸氣生成技術及薄膜去溶劑系統結合感應耦合電漿質譜儀於酒中微
量元素分析之應用

圖2-1、流動注入化學蒸氣生成系統裝置圖 .............................................................. 66
圖2-2、Aridus薄膜去溶劑進樣系統之構造圖 ........................................................... 67
圖2-3、樣品及載體溶液中thiourea濃度對Sb、Hg及Pb元素(a)分析物波峰面積訊號及 (b) 波峰高度S/B的影響 ....................................................................... 77
圖2-4、氧化劑K3Fe(CN)6濃度對Sb、Hg及Pb元素(a)分析物波峰面積訊號及(b)波峰高度S/B的影響 ....................................................................................... 78
圖2-5、樣品及載體溶液中HCl濃度對Sb、Hg與Pb元素(a)分析物波峰面積訊號及(b)波峰高度之S/B的影響 ........................................................................... 80
圖2-6、NaBH4濃度對Sb、Hg與Pb元素(a)分析物波峰面積訊號及(b)波峰高度之S/B的影響 ........................................................................................................ 81
圖2-7、反應試劑流速對Sb、Hg與Pb元素(a)波峰面積相對訊號(b)波峰高度之S/B的影響 .............................................................................................................. 82
圖2-8、CVG-ICP-MS系統中,儀器電漿功率對Sb、Hg與Pb元素(a)波峰面積相對訊號(b)波峰高度之S/B的影響 ................................................................... 84
圖2-9、CVG-ICP-MS系統中,載送氣體流速對Sb、Hg與Pb元素(a)波峰面積相對訊號(b)波峰高度之S/B的影響 ................................................................... 85
圖2-10(a) (b)、氣液分離中液面高度低與高之訊號圖 .............................................. 89
圖2-11、啤酒樣品以CVG-ICP-MS分析之訊號圖 .................................................... 99
圖2-12、米酒樣品以CVG-ICP-MS分析之訊號圖 .................................................. 100
圖2-13、使用Aridus進樣系統探討噴霧腔溫度對多元素分析訊號的影響 …....... 101
圖2-14、使用Aridus進樣系統探討薄膜溫度對多元素分析訊號的影響 ............... 104
圖2-15、使用Aridus進樣系統探討霧化氣體流速對多元素分析訊號的影響 ....... 106
圖2-16、使用Aridus進樣系統探討掃除氣體流速對多元素分析訊號的影響 ....... 108
圖2-17、使用Aridus進樣系統探討氮氣氣體流速對多元素分析訊號的影響 ....... 110
圖2-18、使用Aridus進樣系統探討電漿功率對多元素分析訊號的影響 ............... 113
圖2-19、使用(a)傳統氣動式霧化器及(b)Aridus進樣系統探討模擬基質對分析物干擾影響 ............................................................................................................ 116


表2-1、銻、汞及鉛同位素之含量比 ............................................................................ 69
表2-2、不同增益試劑對Sb、Hg及Pb訊號之比較 .................................................... 76
表2-3、不同長度之mixing coil對CVG訊號生成的影響 .......................................... 86
表2-4、不同注射體積對分析訊號生成的影響 .......................................................... 87
表2-5、液面高度對分析訊號生成的影響 .................................................................. 89
表2-6、CVG系統Sb、Hg及Pb分析訊號之再現性 .................................................. 90
表2-7、FI-CVG-ICP-MS最適化條件 .......................................................................... 91
表2-8、多原子離子對Sb訊號及同位素比測量影響 ................................................. 92
表2-9、以CVG系統標準添加法與水溶液校正曲線斜率之比較 ............................. 94
表2-10、不同銻物種之蒸氣生成效果比較 ................................................................ 95
表2-11、FI-CVG-ICP-MS以水溶液校正曲線法及同位素稀釋法定量標準參考樣品NRCC SLRS-4和NIST trace element in water 1643b ..................................... 97
表2-12、以FI-CVG-ICP-MS定量米酒、啤酒、高粱酒與紅酒樣品中Sb、Hg及Pb之濃度 ......………………………………………………………………….... 98
表2-13、使用Aridus進樣系統探討噴霧腔溫度對多元素分析訊號比值的影響…. 102
表2-14、使用Aridus進樣系統探討薄膜溫度對多元素分析訊號比值的影響…..... 105
表2-15、使用Aridus進樣系統探討霧化氣體流速對多元素分析訊號比值的影響.107
表2-16、使用Aridus進樣系統探討掃除氣體流速對多元素分析訊號比值的影響. 109
表2-17、使用Aridus進樣系統探討氮氣氣體流速對多元素分析訊號比值的影響. 111
表2-18、使用Aridus進樣系統探討電漿功率對多元素分析訊號比值的影響......... 114
表2-19、使用Aridus進樣系統探討不同乙醇濃度對多元素分析訊號比值的影響. 115
表2-20、Aridus系統分析訊號之再現性 ………....................................................... 117
表2-21、Aridus以水溶液校正曲線法定量標準參考樣品NRCC SLRS-4和NIST trace element in water 1643b .................................................................................... 119
表2-22、Aridus以水溶液校正曲線法定量酒類樣品 ……..........................………. 120
表2-23、酒類樣品中Sb、Hg及Pb之定量結果之比較 .............................………… 121
表2-24、使用Aridus進樣系統探討不同內標準對多元素分析訊號比值的影響.… 124

參考文獻 References
一、
1. 國內環保法規 “飲用水水質標準值”,民國九十八年
2. Division of Toxicology, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. 2007 CERCLA Priority List of Hazardous Substances. [htt://www.atsdr.cdc.gov/cercla/07list.html].

3. Citak, D.; Tuzen, M., A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48, 1399-1404

4. Gao, Y.; Wu, P.; Li, W.; Hou, X. D., Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination. Talanta 2010, 81,586-590

5. Jiang, X. M.; Wen, S. P.; Xiang, G. Q., Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials. J. Hazard. Mater. 2010, 175, 146-150

6. Shah, A. Q.; Kazi, T. G.; Baig, J. A.; Afridi, H. I., Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48, 65-69

7. Chen, J. G.; Chen, H. W.; Jin, X. H.; Chen, H. T., Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta 2009, 77, 1381-1387

8. Meeravalia, N. N.; Jiang, S. J., Interference free ultra trace determination of Pt, Pd and Au in geological and environmental samples by inductively coupled plasma quadrupole mass spectrometry after a cloud point extraction. J. Anal. At. Spectrom. 2008, 23, 854-860

9. Meeravalia, N. N.; Jiang, S. J., Microwave assisted mixed-micelle cloud point extraction of Au and Tl from environmental samples without using a chelating agent prior to ICP-MS determination. J. Anal. At. Spectrom. 2008, 23, 1365-1371

10. Li, Y. J.; Hu, B.; He, M.; Xiang, G. Q., Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction. Water Res. 2008, 42, 1195-1203

11. Donati, G. L.; Pharr, K. E.; Calloway, C. P., Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry. Talanta 2008, 76, 1252-1255

12. Watanabe, H.; Tanaka, H., Nonionic surfactant as a new solvent for liquid liquid extraction of zinc with 1-(2-pyridylazo)-2-naphthol. Talanta 1978, 25, 585-589

13. Thompson, K. C.; Thomerson, D. R., Atomic absorption studies on the determination of antimony, arsenic, bismuth, germanium, lead, selenium, tellurium and tin by utilizing the generation of covalent hydrides. Analyst 1974, 99, 596-601

14. Braman, R. S.; Justen, L. L.; Foreback, C. C. Direct volatilization spectral emission type detection system for nanogram amounts of asenic and antimony. Anal. Chem. 1972, 44, 2195-2199

15. Yan, X. P.; Ni, Z. M., Vapour generation atomic absorption spectrometry. Anal. Chim. Acta 1994, 291, 89-105

16. Hatch, W. R.; Ott, W. L., Determination of submicrogram quantities of mercury by atomic absorption spectrometry. Anal. Chem. 1968, 40, 2085-2087

17. Milne, A.; Landing W.; Bizimis, M.; Morton, P., Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled plasma mass spectrometry. Anal. Chim. Acta, 2010, 665, 200-207

18. Zhu, Y.; Inagaki, K.; Chiba, K., Determination of Fe, Cu, Ni and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column. J. Anal. At. Spectrom. 2009, 24, 1179-1183

19. Vassileva, E.; Quetel, C. R., Certification measurement of the cadium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta. 2004, 519, 79-86

20. Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological sample by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. J. Anal. At. Spectrom. 1996, 11, 353-357

21. 黃覃君,”流動式注入冷蒸氣生成裝置結合同位素稀釋感應耦合電漿質譜儀分析法定量真實樣品中微量鎘之研究”中山大學碩士論文,民國88年七月

22. Ojeda, C. B.; Rojas, F. S., Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal. Bioanal. Chem. 2009, 394, 759-782

23. 吳松原,”霧點萃取法結合動態反應管感應耦合電漿質譜儀環境水樣中微量元素分析之應用”中山大學碩士論文,民國97年一月

24. SanzMedel, A.; Campa, M. D.; Gonzalez, E. B., Organised surfactant assemblies in analytical atomic spectrometry. Spectrochim. Acta Part B 1999, 54, 251-287

25. Bezerra, M. D.; Arruda, M. A.; Ferreira, S. L., Cloud Point Extraction as a Procedure of Separation and Pre-Concentration for Metal Determination Using Spectroanalytical Techniques: A Review. Appl. Spectrosc. 2005, 40, 269-299

26. 辜于誠,”微波輔助霧點萃取法結合動態反應管感應耦合電漿質譜儀於水樣中微量鉻、銅、鎘及鉛分析之應用”中山大學碩士論文,民國99年一月

27. Sun, H. W.; Suo, R., Investigation of enhancing effect for hydride generation atomic fluorescence of transition metal elements. Spectrosc. Spectr. Anal. 2008, 28, 2684-2690

28. Sun, H. W.; Suo, R., Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta 2004, 509, 71-76

29. Lu, Y. K.; Sun, H. W.; Yuan, C. G.; Yan, X. P., Simultaneous determination of trace cadmium and arsenic in biological sample by hydride generation-double channel atomic fluorescence spectrometry. Anal. Chem. 2002, 74, 1525-1529

30. Ke, Y.; Sun, Q.; Yang, Z.; Xin, J.; Chen, L.; Hou, X. D., Determination of trace cadmium and zinc in corn kernels and related soil samples by atomic absorption and chemical vapor generation atomic fluorescence after microwave-assisted digestion. Spectrosc. Lett. 2006, 39, 29-43

31. Chen, H.; Brindle, I. D.; Le, X. C., Prereduction of arsenic(V) to arsenic(III), enhancement of the signal , and reduction of interferences by L-cysteine in the determination of arsensic by hydride generation. Anal. Chem. 1992, 64, 667-672

32. Matusiewicz, H.; Mikolajczak, M., Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction-electrothermal AAS. J. Anal. At. Spectrom. 2001, 16, 652-657

33. Sanzmedel, A; Temprano, M.; Garcia, N. B., Generation of Cadmium Atoms at Room Temperature Using Vesicles and Its Application to Cadmium Determination by Cold Vapor Atomic Spectrometry. Anal. Chem. 1995, 67, 2216-2223

34. Ribeiro, A. S.; Vieira, M. A.; Willie, S., Ultrasound-assisted vapor generation of mercury. Anal. Bioanal. Chem. 2007, 388, 849-857

35. Yu, Y. L.; Du, Z.; Wang, J. H., The development of a miniature atomic fluorescence spectrometric system in a lab-on-valve for mercury determination. J. Anal. At. Spectrom. 2007, 22, 650-656.

36. Rodushkin, I.; Nordlund, P.; Engstrom, E., Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma. J. Anal. At. Spectrom. 2005, 20, 1250-1255.

二、
1. Grindlay, G.; Mora, J.; Gras, L., Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications. Anal. Chim. Acta 2011, 691, 18-32

2. Kristl, J.; Veber, M.; Slekovec, M., The application of ETAAS to the determination of Cr, Pb and Cd in samples taken during different stages of the winemaking process. Anal. Bioanal. Chem. 2002, 373, 200-204

3. Kim, M., Determination of lead and cadmium in wines by graphite furnace atomic absorption spectrometry. Food Addit.Contam. 2004, 21, 154-157

4. Karadjova, I.; Arpadjan, S.; Cvetkovic, J., Sensitive Method for Trace Determination of Mercury in Wines Using Electrothermal Atomic Absorption Spectrometry. Microchim. Acta 2004, 147, 39-43

5. Dessuy, M. B.; Vale, M. G. R.; Souza, A. S., Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Talanta 2008, 74, 1321-1329

6. Ajtony, Z.; Szoboszlai, N.; Susko, E. K., Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta 2008, 76, 627-634

7. Matusiewicz, H.; Mikolajczak, M., Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction-electrothermal AAS. J. Anal. At. Spectrom. 2001, 16, 652-657

8. Sauvage, L.; Frank, D.; Stearne, J., Trace metal studies of selected white wines: an alternative approach. Anal. Chim. Acta 2002, 458, 223-230

9. Huang, M. D.; Becker-Ross, H.; Florek, S., Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flameusing a continuum-source atomic-absorption spectrometer and an air-acetylene flame. Anal. Bioanal. Chem. 2005, 382, 1877-1881

10. Ferreira, S. L. C.; Souza, A. S.; Brandao, G. C., Direct determination of iron and manganese in wine using the reference element technique and fast sequential multi-element flame atomic absorption spectrometry. Talanta 2008, 72, 699-702

11. Carvalho, M. L.; Barreiros, M. A.; Costa, M. M., Study of heavy metals in Madeira wine by total reflection x-ray fluorescence analysis. X-ray spectrum. 1996, 25, 29-32

12. Gruber, X.; Kregsamer, P.; Wobrauschek, P., Total-reflection X-ray fluorescence analysis of Austrian wine. Spectrochim. Acta Part B 2006, 61, 1214-1218
13. Anjos, M. J.; Lopes, R. T.; de Jesus, E. F. O., Trace elements determination in red and white wines using total-reflection X-ray fluorescence. Spectrochim. Acta Part B 2003, 58, 2227-2232

14. Karadjova, I. B.; Lampugnani, L.; D'Ulivo, A., Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate(III). Anal. Bioanal. Chem. 2007, 388, 801-807

15. Wu, H.; Jin, Y.; Luo, M. B., A simple and sensitive flow-injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for the determineation of ultra-trace lead in water, wine, and rice. Anal. Sci. 2007, 23, 1109-1112

16. Elci, L.; Arslan, Z.; Tyson, J. F., Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry. J. Hazard. Mater. 2009, 162, 880-885

17. Frias, S.; Diaz, C.; Conde, J. E., Selenium and mercury concentrations in sweet and dry bottled wines from the Canary Islands, Spain. Food Addit.Contam. 2003, 20, 237-240

18. Segura, M.; Madrid, Y.; Camara, C., Evaluation of atomic fluorescence and atomic absorption spectrometric techniques for the determination of arsenic in wine and beer by direct hydride generation sample introduction. J. Anal. At. Spectrom. 1999, 14, 131-135

19. Da Silva, J. C. J.; Cadore, S.; Nobrega, J. A., Dilute-and-shoot procedure for the determination of mineral constituents in vinegar samples by axially viewed inductively coupled plasma optical emission spectrometry (ICP OES). Food Addit.Contam. 2007, 24, 130-139

20. Moreno, I. M.; Gonzalez-Weller, D.; Gutierrez, V., Determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in red wine samples by inductively coupled plasma optical emission spectroscopy: Evaluation of preliminary sample treatments. Microchem. J. 2008, 88. 56-61

21. Gonzalvez, A.; Armenta, S.; Pastor, A., Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques. J. Agric. Food Chem. 2008, 56. 4943-4954

22. Gonzalvez, A.; Llorens, A.; Cervera, M. L., Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem. 2009, 112. 26-34

23. Almeida, C. M. R.; Vasconcelos, M. T. S. D.; Barbaste, M., ICP-MS multi-element analysis of wine samples - a comparative study of the methodologies used in two laboratories. Anal. Bioanal. Chem. 2002, 374, 314-322

24. Almeida, C. M.; Teresa, M.; Vasconcelos, S. D., Advantages and limitations of the semi-quantitative operation mode of an inductively coupled plasma-mass spectrometer for multi-element analysis of wines. Anal. Chim. Acta 2002, 463, 165-175

25. Barbaste, M.; Medina, B.; Perez-Trujillo, J. P., Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS. Food Addit.Contam. 2003, 20, 141-148

26. Quetel, C. R.; Nelms, S. M.; Van Nevel, L., Certification of the lead mass fraction in wine for comparison 16 of the International Measurement Evaluation Programme. J. Anal. At. Spectrom. 2001, 16, 1091-1100



27. Grindlay, G.; Mora, J.; Maestre, S; Gras, L., Application of a microwave-based desolvation system formulti-elemental analysis of wine by inductively coupled plasma based techniques. Anal. Chim. Acta 2008, 629, 24-37

28. Chung, C. H.; Brenner, I.; You, C. F., Comparison of microconcentric and membrane-desolvation sample introduction systems for determination of low rare earth element concentrations in surface and subsurface waters using sector field inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 2009, 64, 849-856

29. Akinbo, O. T.; Carnahan, J. W., Investigation of a flat sheet membrane desolvator for aqueous solvent removal with inductively coupled plasma atomic emission spectrometry. Talanta 1997, 45, 137-146

30. Sung, Y. G.; Lim, H. B., Double membrane desolvator for direct analysis of isopropyl alcohol in inductively coupled plasma atomicemission spectrometry and inductively coupled plasma mass spectrometry(ICP-MS). Microchem. J. 2000, 64, 51-57

31. http://www.cetac.com/nebulizers/aridus_two.asp

32. Fragniere, C.; Haldimann, M.; Eastgate, A., A direct ultratrace determination of platinum in environmental, food and biological samples by ICP-SFMS using a desolvation system. J. Anal. At. Spectrom. 2005, 20, 636-630

33. You, C. F.; Li, M. D., Precise determination of sulfur isotopic ratio in aqueous solutions by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2005, 20, 1392-1394

34. Benkhedda, K.; Chen, H.; Dabeka, R., Isotope ratio measurements of iron in blood samples by multi-collector ICP-MS to support nutritional investigations in humans. Biol. Trace Elem. Res. 2008, 122, 179-192

35. Chen, S. Y.; Zhang, Z. F.; Yu, H. M., Determination of trace lead by hydride generation-inductivelycoupled plasma-mass spectrometry. Anal. Chim. Acta 2002, 463, 177-188

36. Gan, W. E.; Shi, W. W.; Su, Q. D., Simultaneous determination of trace mercury and cadmium intobacco samples by cold vapor generation-atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2004, 19, 911-916

37. Dos Santos, E. J.; Herrmann, A. B., Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Bioanal. Chem. 2007, 388, 863-868

38. Maleki, N.; Safavi, A.; Ramezani, Z., Determination of lead by hydride generation atomic absorption spectrometry (HGAAS) using a solid medium for generating hydride. J. Anal. At. Spectrom. 1999, 14, 1227-1230

39. Karadjova, I. B.; Lampugnani, L.; D'Ulivo, A., Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate(III). Anal. Bioanal. Chem. 2007, 388, 801-807

40. Wu, H.; Jin, Y.; Luo, M. B., A simple and sensitive flow-injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for the determination of ultra-trace lead in water, wine, and rice. Anal. Sci. 2007, 23, 1109-1112

41. Afonso, D. D.; Baytak, S.; Arslan, Z., Simultaneous generation of hydrides of bismuth, lead and tin in the presence of ferricyanide and application to determination in biominerals by ICP-AES. J. Anal. At. Spectrom. 2010, 25, 726-729

42. Ezer, M., Continuous flow hydride generation laser induced fluorescence spectrometry for trace determination of lead in water and sediment samples. Intern. J. Environ. Anal. Chem. 2010, 90, 697-707

43. Zheng, L.; Lin, L.; Zhu, L. H.; Jiang, M. D., Investigation of cobalt interference on lead hydride generation with tetrahydroborate(III) in the presence of hexacyanoferrate(III). Spectrochim. Acta Part B 2009, 64, 222-228

44. Chuachuad, W.; Tyson, J. F., Determination of lead by flow injection hydride generation atomic absorption spectrometry with tetrahydroborate immobilized on an anion-exchange resin. J. Anal. At. Spectrom. 2005, 20, 282-288

45. Ertas, N.; Arslan, Z.; Tyson, J. F., Determination of lead by hydride generation atom trapping flame atomic absorption spectrometry. J. Anal. At. Spectrom. 2008, 23, 223-228

46. Berkkan, A.; Ertas, N., Determination of lead in dialysis concentrates using flow injection hydride generation atomic absorption spectrometry. Talanta 2004, 64, 423-427

47. 楊惠珍,”感應耦合電漿質譜儀在錫及鉛物種分析之應用 ”中山大學碩士論文,民國84年五月

48. Niedzielski, P.; Siepak, M., Determination of Sb(III) and Sb(V) in water samples by hydride generation atomic absorption spectrometry with in-situ trapping in a graphite tube. Anal. Lett. 2003, 36, 971-986

49. Jiang, X. M.; Wen, S. P.; Xiang, G. Q., Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials. J. Hazard. Mater. 2010, 175, 146-15

50. Keresztes, S.; Tatar, E.; Mihucz, V. G., Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci.Total Environ. 2009, 407, 4731-4735

51. Shotyk, W.; Krachler, M., Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ. Sci. Technol. 2007, 41, 1560-1563

52. Ristic, M.; Popovic, I.; Pocajt, V., Concentrations of selected trace elements in mineral and spring bottled waters on the Serbian market. Food Addit.Contam. 2011, 4, 6-14

53. Westerhoff, P.; Prapaipong, P.; Shock, E., Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 2008, 42, 551-556

54. 張正達,”茶與酒類中微量元素濃度探討與環境之相互影響 ”成功大學碩士論文,民國96年六月

55. Grindlay, G.; Mora, J.; Gras, L., Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2009, 652, 154-160

56. Allain, P.; Jaunault, L.; Mauras, Y., Signal enhancement of elements due to the presence of carbon-containing compounds in inductively coupled plasma mass spectrometry. Anal. Chem. 1991, 63, 1497-1488

57. Larsen, E. H.; Sturup, S., Carbon-enhanced inductively-coupled plasma-mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom. 1994, 9, 1099-1105

58. Llorente, I.; Gomez, M.; Camara, C., Improvement of selenium determination in water by inductively coupled plasma mass spectrometry through use of organic compounds as matrix modifiers. Spectrochim. Acta Part B 1997, 52, 1825-1838

59. Ribeiro, A. S.; Vieira, M. A.; Willie, S., Ultrasound-assisted vapor generation of mercury. Anal. Bioanal. Chem. 2007, 388, 849-857


60. Yu, Y. L.; Du, Z.; Wang, J. H., The development of a miniature atomic fluorescence spectrometric system in a lab-on-valve for mercury determination. J. Anal. At. Spectrom. 2007, 22, 650-656

61. Peart, D. B.; Antweiler, R. C.; Taylor, H. E., Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples. Analyst. 1998, 123, 455-476

62. Akinbo, O. T.; Carnahan, J. W., Membrane desolvation for the analysis of organic solutions and liquid chromatographic samples with low power helium microwave induced plasma atomic emission detection. Anal. Chim. Acta 1999, 390, 217-226

63. Sung, Y. G.; Lim, H. B., Double membrane desolvator for direct analysis of isopropyl alcohol in inductively coupled plasma atomicemission spectrometry and inductivelycoupled plasma mass spectrometry(ICP-MS). Microchem. J. 2000, 64, 51-57

64. 國內財政部酒類衛生標準公告 “ 酒類衛生標準第三條 ”,民國九十七年
65. Sabarudin, A.; Noguchi, O.; Oshima, M., Application of chitosan functionalized with 3,4-dihydroxy benzoic acid moiety for on-line preconcentration and determination of trace elements in water samples. Microchim. Acta 2007, 159, 341-348
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code