Responsive image
博碩士論文 etd-0826111-121816 詳細資訊
Title page for etd-0826111-121816
論文名稱
Title
P 型熱電材料Bi0.5Sb1.5Te3 之合成與分析
Study of the P-type Thermoelectric Material Bi0.5Sb1.5Te3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-26
關鍵字
Keywords
冷壓式、球磨法、Bi0.5Sb1.5Te3、熱電材料、P 型
Cold pressing, Ball milling, Bi0.5Sb1.5Te3, Thermoelectric, P-type
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1800
The thesis/dissertation has been browsed 5660 times, has been downloaded 1800 times.
中文摘要
Bi-Te合金系列為低溫域所普遍使用之熱電材料,本研究利用陶瓷製程製備Bi0.5Sb1.5Te3熱電材料。以Bi(3N)、Sb(3N)、Te(4N)三種純元素,採用球磨法以400rpm和冷壓1200psi製備塊材,再用真空管狀高溫爐燒結塊材,探討燒結溫度350℃、375℃、400℃之化合物的結構、微觀形貌及熱電性能的研究。
研究發現熱電材料在陶瓷製備過程中會發生氧化現象且產生較大晶粒而影響熱電特性,在燒結溫度350℃和時間1hr下所製成的試片,其Seebeck係數可達300μV/K,但電阻率為最高;在燒結375℃和時間3hr下所製成的試片,在微結構方面上可觀察到方柱型結晶,可得到最高的ZT值;燒結溫度為400℃時,由於Te揮發導致孔隙增多,而增加聲子散射機制及降低聲子熱傳導(κL)。本研究以陶瓷製程製備熱電材料Bi0.5Sb1.5Te3,其最佳參數為:燒結溫度375℃及燒結時間3hr,ZT值在300K時約為0.15。
Abstract
Bismuth telluride based compounds is known to be the best thermoelectric materials within the low temperature regime. In this study, the P-type Bi0.5Sb1.5Te3 thermoelectric alloy was synthesized by ceramic processing method.
The Bi0.5Sb1.5Te3 thermoelectric materials were prepared via the ball milling, cold pressing, and sintering processes. The effects of sintering time and temperature on the microstructures and thermoelectric properties were investigated and discussed.
The X-ray diffraction patterns of Bi0.5Sb1.5Te3 reveal that the compounds have the oxides after the sintering processes and the heat treatment process causes grain growth by the increased sintering temperature and time.
The results of thermoelectric properties show that the optimal Seebeck coefficient 300(μV/K) was obtained as the sample was sintered at 350°C for 3h and the resistivity will reach the maximum. The figure of merit of 0.15 was obtained at room temperature as the sample was sintered at 375°C for 3h.
目次 Table of Contents
摘要............. i
ABSTRACT .. ii
目錄............. iii
圖表目錄..... vii
第一章 緒論 1
1.1前言....... 1
1.2研究目的.................... 2
1.3 Bi0.5Sb1.5Te3熱電材料……………………………………………7
第二章 基礎理論與文獻回顧.............. 9
2.1熱電理論.................... 9
2.1.1 Seebeck效應........ 9
2.1.2 Peltier效應............ 11
2.1.3 Thomson效應...... 11
2.2熱電優值之定義(Figure of merit,ZT)............. 12
2.2.1熱電優值............... 14
2.2.2熱電轉換效率....... 15
2.2.3聲子熱導對熱傳導係數的影響 16
2.2.4電子熱導對熱傳導係數的影響...................... 18
2.3熱電應用 ………………………………………………………19
2.3.1熱電材料應用例子…………………………………………22
2.4文獻回顧-熱電塊材製作方法…………………………………24
第三章 實驗方法與步驟 ………………………………………………26
3.1實驗流程圖 ………………………………………………………26
3.2樣品製備 …………………………………………………27
3.2.1原始材料 ……………………………………………………28
3.2.2粉末操作儀器 ………………………………………………28
3.2.3粉末配製 ……………………………………………………29
3.2.4塊材操作儀器 ………………………………………………29
3.2.5塊材製作 ……………………………………………………30
3.3晶體結構分析 …………………………………………………30
3.3.1 X射線粉末繞射儀 …………………………………………30
3.3.2掃描式電子顯微鏡-SEM …………………………………..31
3.3.3 X光能譜散佈分析儀-EDS ………………………………..31
3.3.4孔隙率、密度測量 …………………………………………31
3.4熱電特性分析 ……………………………………………………32
3.4.1 電阻率量測………………………………………………32
3.4.2 Seebeck係數量測…………………………………………34
3.4.3 熱電塊材熱傳導係數量測………………………………37
第四章 結果與討論 ……………………………………………………45
4.1瑕燒粉末及冷壓塊材之物性分析 ………………………………45
4.1.1瑕燒粉末之X光繞射分析 …………………………………45
4.1.2冷壓燒結塊材之X光繞射分析 ……………………………47
4.2 SEM表面分析與EDS成份分析 ………………………………50
4.3密度與孔隙率……………………………………………………55
4.4熱電特性分析 ……………………………………………………59
4.4.1電阻率分析............. 59
4.4.2 Seebeck分析………………………………………………61
4.4.3 熱傳導分析…………………………………………………65
4.4.4 ZT值分析…………………………………………………66
第五章 結論 ……………………………………………………………68
參考文獻 ………………………………………………………………70
參考文獻 References
[1] G. S. Nolas, J. Sharp, and H. J. Goldsmid,“Thermoelectrics:basic principles and new materials developments”,Springer,292 (2001).
[2] O. Yamashita, “Thermoelectric properties of heavily GaP- and P-doped Si0.95Ge0.05”, J.Appl. Phys.,89, 1 (2001).
[3] L. T. Zhang, M. Tsutsui, K. Ito, and M. Yamaguchi, “Thermoelectric properties of Zn4Sb3 thin films prepared by magnetron Sputtering”, Thin Solid Films,443, 84 (2003).
[4] H. Wang, J. F. Li, C. W. Nan, and M. Zhou, “High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”, Appl.Phys. Lett.,88, 092104 (2006).
[5] F. P. P. Pierre, J. D’Angelo, H. Kong, A. Downey, J. L. Short, R. Pcionek, T. P. Hogan, C. Uher, and M. G.Kanatzidis, “Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe−PbS”, J. Am. Chem. Soc., 129, 9780 (2007).
[6] S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang, and X. B. Zhao, “Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials”, Nanotechnology,19, 245707 (2008).
[7] W. Xie, X. Tang, Y. Yan, Q. Zhang, and Terry M. Tritt,“High thermoelectric performance BiSbTe alloy with unique low-dimensional structure”, J. Appl. Phys.,105, 113713 (2009).
[8] D. M. Rowe, “Thermoelectrics handbook:macro to nano”, CRC Press, 1 (2006).
[9] R. M. Vlasova, and L. S. Stil’band, J. Tech. Phys., Moscow, 25, 569 (1955).
[10] 廖信、王裕強,“精密網版印刷技術應用於熱電致冷原件之初探”,中央印刷廠,第二十四卷第四期,2008。
[11] J. F. Li, W. S. Liu, L. D. Zhao, and Zhou, M. “High-performance nanostructured thermoelectric materials”, NPG Asia Materials, 2, 152 (2010).
[12] 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,第93頁(2005)。
[13] S. Michel, S. Diliberto, N. Stein, B. Bolle, and C. Boulanger“Characterisation of electroplated Bi2(Te1−xSex)3 alloys”,J. Solid State Electro. Chem., 12, 95 (2008).
[14] Y. H. Ma, Q. Poudel, B. Lan, Y. Yu, B. Wang, D. Chen, G. Ren, “Enhanced thermoelectric figure-of-merit in p-type nanostructuredbismuth antimony tellurium alloys made from elemental chunks”. Nano lett., 8, 2580 (2008).
[15] D. H. Kim, and T. Mitani, “Thermoelectric properties of fine-grained Bi2Te3 alloys”, J. Alloys Compounds, 399, 14 (2005).
[16] Y. Cao, T. Zhu, X. Zhao, X. Zhang, and J. Tu, “Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials”, Appl. Phys. A, 92, 321 (2008).
[17] 吳歷杰,“電流燒結處理對粉末壓錠 Bi-Sb-Te熱電材料的影響”. (2009)。
[18] M.S.Smith, R. S.Knight, and C. W.Spencer, J.Appl. Phys., 33, 443, (1973).
[19] T.J.Seebeck, “Magnetische polarization der metalle und erzedurch temperature-differenze.Abhand deut,” Akad. Wiss. Berlin, 265 (1821).
[20] J.C.Peltier,“Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, 371(1834).
[21] J. Chen, Z. Yan, and L. Wu, “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator”, J. Appl. Phys., 79, 8823 (1996).
[22] D. M. Rowe, “Thermoelectrics Handbook :Macro to Nano”, Ch3 (2005).
[23] Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach”, Adv. Funct. Mater.,20, 357 (2010).
[24] B. Sales, D. Mandrus, and R. K. Williams, “Filled skutteruditeantimonides: A new class of thermoelectric materials”, Science, 272, 1325 (1996).
[25] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature, 413, 597 (2001).
[26] A. I. Hochbaum, R. D. Chen, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A. Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature, 451, 163 (2008).
[27] J. J. Shen, S. N. Zhang, S. H. Yang, Z. Z. Yin, T. J. Zhu, X. B. Zhao, “Thermoelectric and thermomechanical properties of the hot pressed polycrystalline Bi0.5Sb1.5Te3 alloys”, J. Alloys Compounds,509,161(2010).
[28] W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, “Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys”, Appl. Phys. Lett.,94, 102111 (2009).
[29] W. Ren, C. Cheng, Z. Ren, and Y. Zhong, “The effect of the precursor nanopowder size on the thermoelectric properties of nanostructured Bi-Sb-Te bulk materials”, Physica B: Condensed Matter,405,4931 (2010).
[30] C. H. Kuo, “Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering”, J. Alloys Compounds, 496, 687 (2010).
[31] J. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, “Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3) 0.25 (Sb2Te3) 0.75 prepared via BMA-HP method.”, Mater. Chem. Phys., 70, 90 (2001).
[32] R. M.German, “Sintering theory and practice”.Sintering Theory and Practice, 1, 586 (1996).
[33] A. El-KorashyH. El-Zahed, H. A. Zayed,andM. A.Kenawy, “Effect of composition and structure on electrical conduction of Se(100-x)Te(x) films”, Solid State Communications, 95, 335 (1995).
[34] D. K. Macdonald, “Thermoelectricity, an introduction to the principles [M]”, New York: Wiley, 15 (1962).
[35] T. Hamachiyo, M. Ashida, and K. Hasezaki, “Thermal Conductivity of
Bi0.5Sb1.5Te3 Affected by Grain Size and Pores”, J. Electron, Mater., 38, 1048 (2009).
[36] C. H. Chu, “Study on the Sintering Additives and Specific Sintering Process of AlN Ceramic” ,76 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code