Responsive image
博碩士論文 etd-0826111-154527 詳細資訊
Title page for etd-0826111-154527
論文名稱
Title
光纖懸臂樑整合流場引致振動現象之微流體流量計及黏度計
Microfluidic Flow Meter and Viscometer Utilizing Flow Induced Vibration Phenomena on an Optic Fiber Cantilever
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-20
繳交日期
Date of Submission
2011-08-26
關鍵字
Keywords
微流體晶片、流速計、頻譜分析、流體引致振動、黏度計
flow-induced vibration, spectra analysis, flow meter, microfluidic chip, viscometer
統計
Statistics
本論文已被瀏覽 5672 次,被下載 909
The thesis/dissertation has been browsed 5672 times, has been downloaded 909 times.
中文摘要
本研究提出了一微流體感測器,目的在於檢測流速和黏度,尤其是超低黏度之量測。在研究中利用流體引致振動現象,驅動光纖於流速以及壓力影響下之位移訊號,透過頻譜分析之後,以其頻率表達不同流體之流速以及黏度。研究上,主要利用化學蝕刻之後之單模光纖,即光纖懸臂樑,因直徑較小便使得其可橈性較大,容易在微流體系統下隨著流體動力行為而改變,藉由光纖將流體特性訊號以光學訊號輸出,並且透過雪崩二極體(APD, avalanche photodiode)光強度感測器量測光纖懸臂樑自由端處之訊號。研究中,光纖直徑約為9 μm並嵌入在微流體晶片之中,經由綠光雷射耦光至微流體管道之中。本研究透過輸入不同流速時,即產生光纖兩側之不對稱壓力,進而有流體引致振動現象,並帶動光纖振動。在分析上,於APD捕捉訊號時可發現其時域下振動之週期性,通過頻譜分析,將收集到的光強度週期性訊號轉換成頻率,而當液體流速越大時光纖懸臂樑振動頻率也越大,另外一方面,也以黏滯係數為二氧化碳(0.0148 cP),氮氣(0.0174 cP),空氣(0.0183 cP),氧氣(0.0202 cP),氬氣(0.0223),進行量測,其振動頻率由於流體黏滯力影響降低,故流速越快其振動頻率也隨之增高,且振動頻率約在液體時的40倍,故流體動態特性,包括流速和黏度可以以此方式檢測。研究結果可知,本研究演示的感測器能夠感測流體樣品的流速0.17 m/s至68.81 m/s 以及黏度從0.306 cP至1.200 cP。此外,在氣體中之結果為0.0148 cP至0.0223 cP,且於去離子水中之量測靈敏度約為3.667 mm/(s•Hz),即約為40 μL/(min•Hz),而在氣體中為6.190 mm/(s•Hz)。微流體流速及黏度感測器的研製提供了一個簡單而直接的方法用於在微流體通道之中檢測流體特性,其可以精確的同時量測超低黏滯係數之氣體黏度及流速。
Abstract
This study developed a microfluidic flow sensor for the detections of velocity and viscosity, especially for ultra-low viscosity detection. An etched optic fiber with the diameter of 9 μm is embedded in a microfluidic chip to couple green laser light into the microfluidic channel. The flow induced vibration causes periodic flapping motion of the optic fiber cantilever because of the pressure difference from two sides of fiber cantilever. Through the frequency analysis, the fluidic properties including the flow rate and the viscosity can be detected and identified. Results show that this developed sensor is capable of sensing liquid samples with the flow rates from 0.17 m/s to 68.81 m/s and the viscosities from 0.306 cP to 1.200 cP. In addition, air samples (0.0183 cP) with various flow rates can also be detected using the developed sensor. Although the detectable range for flow rate sensing is not wide, the sensitivity is high of up to around 3.667 mm/(s•Hz) in test liquid in DI water, and when detecting air the sensitivity is 6.190 mm/(s•Hz). The developed flow sensor provides a simple and straight forward method for sensing flow characteristics in a microfluidic channel.
目次 Table of Contents
致謝 i
目錄 ii
圖目錄 v
表目錄 vii
符號表 viii
簡寫表 x
摘要 xi
Abstract xii
第一章 緒論 1
1-1 前言 1
1-2 封閉環境內的流體行為 1
1-3 流速感測原理與流速計 3
1-3-1 流速感測原理 3
1-3-2 光學式流體感測器 3
1-3-3 聲學式流體感測器 5
1-3-4 熱力學式流體感測器 6
1-3-5 流體力學式流體感測器 8
1-4 黏度感測原理與黏度計 11
1-5 文獻回顧 16
1-6 研究動機與目的 22
1-7 論文架構 23
第二章 流體引致振動原理 24
2-1 不同流體行為引致結構物振動 24
2-2 渦流引致振動 25
2-3 紊流引致振動流場 29
第三章 晶片製作與實驗架設 32
3-1 轉能器製作 32
3-1-1 光纖 32
3-1-2 光纖懸臂樑製作 33
3-2 晶片設計與製作 35
3-2-1 晶片之光罩設計 35
3-2-2 晶片製作流程 36
3-3 實驗架設 41
3-4 實驗方法 43
3-5 訊號處理 44
第四章 結果與討論 45
4-1 實驗晶片 45
4-2 流體引致光纖懸臂樑振動過程 45
4-3 振動訊號分析於時域以及頻域 46
4-4 DI water流速與振動頻率之關係 50
4-5 空氣流速與振動頻率的關係 52
4-6 不同液體黏度與頻率之關係 53
4-7 不同氣體黏度與頻率之關係 54
4-8 不同氣體流速與頻率之關係 55
4-9 第一階振動頻率與第二階振動頻率與流速之關係 56
第五章 結論與未來展望 58
5-1 結論 58
5-2 未來展望 59
參考文獻 60
Appendix A 68
Appendix B 70
自述 71

參考文獻 References
[1] R. D. Blevins, Flow-induced vibration: Van Nostrand Reinhold, 1990.
[2] A. V. Gribok, I. K. Attieh, J. W. Hines and R. E. Uhrig, "Regularization of feedwater flow rate evaluation for venturi meter fouling problem in nuclear power plants", Nuclear technology, 134, 3-14, 2001.
[3] V. Poirier, "Blood flow meter," WO Patent WO/2010/099,293, 2010.
[4] M. Nishi, "Laminar to turbulent transition in pipe flow through puffs and slugs," in Institute of Fluid Mechanics, vol. PhD. Germany: Friedrich-Alexaner University, 2009.
[5] N. T. Nguyen, "Micromachined flow sensors - a review", Flow Measurement and Instrumentation, 8, 7-16, 1997.
[6] Y. Yeh and H. Cummins, "Localized fluid flow measurements with an he-ne laser spectrometer", Applied Physics Letters, 4, 176-78, 1964.
[7] W. Peng, G. R. Pickrell, Z. Huang, J. Xu, D. W. Kim, B. Qi and A. Wang, "Self-compensating fiber optic flow sensor system and its field applications", Applied Optics, 43, 1752-60, 2004.
[8] M. Raffel, C. E. Willert and J. Kompenhans, Particle image velocimetry: Springer, 1998.
[9] L. Szekely, J. Reichert and R. Freitag, "Non-invasive nano-flow sensor for application in micro-fluidic systems", Sensors and Actuators A: Physical, 113, 48-53, 2004.
[10] 楊峯銳, "高精確度超音波流量計流量量測之模擬與實驗," in 應用力學研究所, vol. 博士. 台北市: 臺灣大學, 76, 2009.
[11] G. B. Lee, T. Y. Kuo and W. Y. Wu, "A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a v-shaped plate", Experimental Thermal and Fluid Science, 26, 435-44, 2002.
[12] A. Ezkerra, L. J. Fernandez, K. Mayora and J. M. Ruano-Lopez, "Fabrication of su-8 free-standing structures embedded in microchannels for microfluidic control", Journal of Micromechanics and Microengineering, 17, 2264-71, 2007.
[13] S. Radhakrishnan and A. Lal, "Scalable microbeam flowsensors with electronic readout", Journal of Microelectromechanical Systems, 14, 1013-22, 2005.
[14] L. D. Du, Z. Zhao, C. Pang and Z. Fang, "Drag force micro solid state silicon plate wind velocity sensor", Sensors and Actuators a-Physical, 151, 35-41, 2009.
[15] D. Taherzadeh, C. Picioreanu, U. Kuttler, A. Simone, W. A. Wall and H. Horn, "Computational study of the drag and oscillatory movement of biofilm streamers in fast flows", Biotechnology and Bioengineering, 105, 600-10, 2010.
[16] R. P. Hu and X. G. Huang, "A simple fiber-optic flowmeter based on bending loss", Ieee Sensors Journal, 9, 1952-55, 2009.
[17] J. Lyle and C. Pitt, "Vortex shedding fluid flowmeter using optical fibre sensor", Electronics Letters, 17, 244-45, 1981.
[18] P. Zylka, P. Modrzynski and P. Janus, "Vortex anemometer using mems cantilever sensor", Journal of Microelectromechanical Systems, 19, 1485-89, 2010.
[19] J. S. Barton and M. Saoudi, "A fiber optic vortex flowmeter", Journal of Physics E-Scientific Instruments, 19, 64-66, 1986.
[20] Y. Hlral, H. Kikuta, K. Inoue and Y. Tanaka, "Resonance characteristics of micro cantilever in liquid", Japanese Journal of Applied Physics, 37, 7064-69, 1998.
[21] C. Bergaud, L. Nicu and A. Martinez, "Multi-mode air damping analysis of composite cantilever beams", Japanese Journal of Applied Physics, 38, 6521-25, 1999.
[22] Y. H. Seo and B. H. Kim, "A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration", Journal of Micromechanics and Microengineering, 20, 075024, 2010.
[23] M. Konig, B. R. Noack and H. Eckelmann, "Discrete shedding modes in the von karman vortex street", Physics of Fluids A: Fluid Dynamics, 5, 1846-48, 1993.
[24] H. Kellay, X. Wu and W. Goldburg, "Vorticity measurements in turbulent soap films", Physical Review Letters, 80, 277-80, 1998.
[25] H. Kellay, X. Wu and W. Goldburg, "Experiments with turbulent soap films", Physical Review Letters, 74, 3975-78, 1995.
[26] B. K. Martin, X. L. Wu, W. I. Goldburg and M. A. Rutgers, "Spectra of decaying turbulence in a soap film", Physical Review Letters, 80, 3964-67, 1998.
[27] S. Webster, R. Mcbride, J. S. Barton and J. D. C. Jones, "Air-flow measurement by vortex shedding from multimode and monomode optical fibers", Measurement Science & Technology, 3, 210-16, 1992.
[28] J. H. Lyle and C. W. Pitt, "Vortex shedding fluid flowmeter using optical fiber sensor", Electronics Letters, 17, 244-45, 1981.
[29] Y. Couder, "Two-dimensional grid turbulence in a thin liquid-film", Journal De Physique Lettres, 45, 353-60, 1984.
[30] P. Vorobieff, M. Rivera and R. E. Ecke, "Soap film flows: Statistics of two-dimensional turbulence", Physics of Fluids, 11, 2167-77, 1999.
[31] L. S. Tzentis, "Capillary viscometer," US Patents, 1969.
[32] J. Kestin, M. Sokolov and W. Wakeham, "Theory of capillary viscometers", Applied Scientific Research, 27, 241-64, 1973.
[33] C. I. Company, Cannon instrument company, Available: http://www.cannoninstrument.com/Home.htm
[34] P. Gilinson Jr, C. Dauwalter and E. Merrill, "A rotational viscometer using an ac torque to balance loop and air bearing", Journal of Rheology, 7, 319-32, 1963.
[35] R. A. Serway and J. W. Jewett, Physics for scientists and engineers: Brooks/Cole Pub Co, 2009.
[36] R. J. Murphy Jr and D. E. Ortman, "Rotational viscometer and plastometer," US Patents, 1977.
[37] P. Gravesen, J. Branebjerg and O. S. Jensen, "Microfluidics-a review", Journal of Micromechanics and Microengineering, 3, 168-82, 1993.
[38] P. Oden, G. Chen, R. Steele, R. Warmack and T. Thundat, "Viscous drag measurements utilizing microfabricated cantilevers", Applied Physics Letters, 68, 3814-17, 1996.
[39] S. Kim, K. D. Kihm and T. Thundat, "Fluidic applications for atomic force microscopy (afm) with microcantilever sensors", Experiments in Fluids, 48, 721-36, 2010.
[40] R. Berger, C. Gerber, H. P. Lang and J. K. Gimzewski, "Micromechanics: A toolbox for femtoscale science: "Towards a laboratory on a tip"", Microelectronic Engineering, 35, 373-79, 1997.
[41] C. Bergaud and L. Nicu, "Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media", Review of Scientific Instruments, 71, 2487-92, 2000.
[42] R. Patois, P. Vairac and B. Cretin, "Near-field acoustic densimeter and viscosimeter", Review of Scientific Instruments, 71, 3860-63, 2000.
[43] S. Boskovic, J. W. M. Chon, P. Mulvaney and J. Sader, "Rheological measurements using microcantilevers", Journal of Rheology, 46, 891, 2002.
[44] N. Belmiloud, I. Dufour, A. Colin and L. Nicu, "Rheological behavior probed by vibrating microcantilevers", Applied Physics Letters, 92, 041907-07-3, 2008.
[45] E. K. Reichel, C. Riesch, F. Keplinger, C. E. A. Kirschhock and B. Jakoby, "Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing", Sensors and Actuators A: Physical, 162, 418-24, 2010.
[46] E. K. Reichel, C. Riesch, B. Weiss and B. Jakoby, "A vibrating membrane rheometer utilizing electromagnetic excitation", Sensors and Actuators a-Physical, 145, 349-53, 2008.
[47] W. X. Huang and H. J. Sung, "Three-dimensional simulation of a flapping flag in a uniform flow", Journal of Fluid Mechanics, 653, 301-36, 2010.
[48] S. Taneda, "Waving motions of flags", Journal of the Physical Society of Japan, 24, 392-401, 1968.
[49] C. K. Lin, F. B. Hsiao and S. S. Sheu, "Flapping motion of a planar jet impinging on a v-shaped plate", Journal of aircraft, 30, 320-25, 1993.
[50] C. Shen and C. Gau, "Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements", Biosensors and Bioelectronics, 20, 103-14, 2004.
[51] 陳惠君, "具有阻塊結構之微流體突擴管道之渦流生成探討及其於流體整流之應用," in 機械與機電工程學系研究所, vol. 碩士. 高雄市: 國立中山大學, 95, 2009.
[52] B. Jakoby, R. Beigelbeck, F. Keplinger, F. Lucklum, A. Niedermayer, E. K. Reichel, C. Riesch, T. Voglhuber-Brunnmaier and B. Weiss, "Miniaturized sensors for the viscosity and density of liquids-performance and issues", IEEE Transactions Ultrasonics, Ferroelectrics and Frequency Control, 57, 111-20, 2010.
[53] G. Chen, R. Warmack, T. Thundat, D. Allison and A. Huang, "Resonance response of scanning force microscopy cantilevers", Review of Scientific Instruments, 65, 2532-37, 1994.
[54] J. E. Sader, "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope", Journal of applied physics, 84, 64, 1998.
[55] S. Basak, A. Raman and S. V. Garimella, "Hydrodynamic loading of microcantilevers vibrating in viscous fluids", Journal of applied physics, 99, 114906, 2006.
[56] M. K. Ghatkesar, T. Braun, V. Barwich, J. P. Ramseyer, C. Gerber, M. Hegner and H. P. Lang, "Resonating modes of vibrating microcantilevers in liquid", Applied Physics Letters, 92, 043106, 2008.
[57] V. Lien and F. Vollmer, "Microfluidic flow rate detection based on integrated optical fiber cantilever", Lab on a Chip, 7, 1352-56, 2007.
[58] D. J. Gorman, "Experimental development of design criteria to limit liquid cross-flow-induced vibration in nuclear-reactor heat-exchange equipment", Nuclear Science and Engineering, 61, 324-36, 1976.
[59] M. K. Auyang and W. H. Connelly, "Computerized method for flow-induced random vibration analysis of nuclear-reactor internals", Nuclear Engineering and Design, 42, 257-63, 1977.
[60] F. H. Abernathy and R. E. Kronauer, "The formation of vortex streets", Journal of Fluid Mechanics, 13, 1-20, 1962.
[61] W. Maas, C. Rindt and A. Van Steenhoven, "The influence of heat on the 3d-transition of the von karman vortex street", International journal of heat and mass transfer, 46, 3069-81, 2003.
[62] J. H. J. Buchholz and A. J. Smits, "On the evolution of the wake structure produced by a low-aspect-ratio pitching panel", Journal of Fluid Mechanics, 546, 433-43, 2006.
[63] R. Camassa, B. J. Chung, P. Howard, R. Mclaughlin and A. Vaidya, "Vortex induced oscillations of cylinders at low and intermediate reynolds numbers", Advances in Mathematical Fluid Mechanics, 135-45, 2010.
[64] J. H. Lienhard, W. S. U. T. E. Service and W. S. U. C. O. E. R. Division, Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders: Technical Extension Service, Washington State University, 1966.
[65] S. Yarusevych, "Airfoil operating at low reynolds numbers.", American Institute of Aeronautics and Astronautics, 46, 508-16, 2008.
[66] E. De Langre, M. Paidoussis, O. Doare and Y. Modarres-Sadeghi, "Flutter of long flexible cylinders in axial flow", Journal of Fluid Mechanics, 571, 371-89, 2007.
[67] M. Paidoussis, "Dynamics of flexible slender cylinders in axial flow part 2. Experiments", Journal of Fluid Mechanics, 26, 737-51, 1966.
[68] C. Semler, J. Lopes, N. Augu and M. Paidoussis, "Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 3: Nonlinear dynamics", Journal of fluids and structures, 16, 739-59, 2002.
[69] M. T. Pittard, "Large eddy simulation based turbulent flow-induced vibration of fully developed pipe flow," Master, Brigham Young University, 2003.
[70] 吳順正, 光纖特性與應用. Taiwan: 全華科技圖書, 1993.
[71] C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass", Journal of Micromechanics and Microengineering, 11, 726-32, 2001.
[72] J. P. Den Hartog, Mechanical vibrations: Read Books, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code