Responsive image
博碩士論文 etd-0826113-161753 詳細資訊
Title page for etd-0826113-161753
論文名稱
Title
應用於共模差模類比數位轉換之CMOS電壓時間轉換器之設計
Design of CMOS voltage-to-time converter for CM/DM analog-to-digital conversion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-26
繳交日期
Date of Submission
2013-09-26
關鍵字
Keywords
積分非線性誤差、差分非線性誤差、低功耗、電壓時間轉換器、類比數位轉換器、生醫訊號記錄系統
Common-mode, Differential-mode, Analog-to-digital converter, Voltage-to-time converter, Integrated circuit
統計
Statistics
本論文已被瀏覽 5749 次,被下載 710
The thesis/dissertation has been browsed 5749 times, has been downloaded 710 times.
中文摘要
隨著醫療技術的發達與社會高齡化,醫療監測設備漸漸演變成微型、低功耗、可攜式為主,而在生醫訊號記錄系統中,類比數位轉換器連接著身體的類比訊號與微處理控制器可使用的數位訊號,方便在監測儀器顯示及觀察醫學上的參數。因此,類比數位轉換器(ADC) 為任何檢測紀錄系統重要組成的一部分,設計一個好的ADC 是非常重要的。本論文設計一類比數位轉換器,利用電壓時間轉換器將類比電壓訊號轉換成一位元的數位輸出訊號,再結合後面的共模差模系統,把單位元輸出轉變為八位元的輸出。而此ADC 利用台積電0.35 μm 製程技術實現於晶片上,面積為726 μm × 630 μm,其量測結果功耗為41 μW,採樣頻率為11.5 KS/s,差分非線性誤差為< 1 LSB,積分非線性誤差為< 1.02 LSB,ADC之FOM 為19.7 pJ/step,此ADC 適用於低功耗生醫記錄系統之應用。
Abstract
With advances in integrated circuit (IC) processing technology, medical devices are becoming miniature, with low power consumption. Therefore, wearable and implantable applications become feasible, and patients can conveniently monitor their own health parameters. The analog-to-digital converter (ADC) is a crucial building block in such systems, providing the interface between the analog input signals and the digital domain used for signal processing in the microprocessor and by software used to monitor the instrument output. In this thesis, a pair of single-slope integrating ADCs is designed and tested, providing two 8-bit output channels. The ADC channels can be paired on-chip to provide a differential-mode (DM) and common-mode (CM) signal output. The conversion circuit consists of a bias generator, a voltage-to-time converter with comparator, and the digital CM/DM output circuits. The main focus of this thesis is on the design of the voltage-to-time converter circuit and its supporting blocks. Test chips are realized in TSMC 0.35 µm process technology with an active area of 726 μm × 630 μm. The reported measurement results show a power consumption of 41μW, a maximum conversion rate of 11.5 kS/s, differential non-linearity (DNL) below 1 LSB, integral non-linearity (INL) below 1.02 LSB, and a figure-of-merit (FOM) of 19.7 pJ/step, making the design suitable for low-power biomedical application.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables xii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Thesis organization 4
Chapter 2 System operation principle 5
2.1 Introduction 5
2.2 ADC specification 8
2.3 System description 9
2.4 Extension to provide CM and DM output 12
Chapter 3 Voltage-to-time converter design 13
3.1 Circuit structure 13
3.2 Bias circuit 14
3.2.1 Selection of bias circuit 14
3.2.2 Internal bias circuit 15
3.2.3 External bias conditioning 20
3.2.4 Current distribution 22
3.3 Low power comparator design 23
3.4 Voltage-to-time converter (VTC) 27
3.5 Circuit layout 32
Chapter 4 Common-mode and differential-mode counters 33
4.1 Common mode block 34
4.2 Differential mode block 37
4.3 Multiplexer outputs 42
Chapter 5 Chip measurement 43
5.1 Testing board 43
5.2 Measurement of bias block 45
5.3 Measurement of VTC 46
5.4 Measurement using ECG signal input 55
5.5 Measurement of CM/DM block 57
5.5.1 Measurement of single ADC output 57
5.5.2 Measurement of DM output 58
5.5.3 Measurement of sign bit 60
5.5.4 Measurement of CM output 60
5.6 Comparison 62
Chapter 6 Conclusion and future works 65
6.1 Conclusion 65
6.2 Future work 66
Reference 67
參考文獻 References
[1]. John G. Webster, Medical Instrumentation - Application and Design, 3rd edition, John Wiley & Sons, 1988
[2]. D.A Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997.
[3]. W. P. Klein, (2007) Signal Chain Basics Series. [Online]
Available: http://www.eetimes.com/document.asp?doc_id=1272411
[4]. X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip”, IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1067-1077, Apr. 2009.
[5]. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS, Circuit design, layout and simulation, John Wiley & Sons, 1998.
[6]. R. Rieger and S.-L. Deng, “Double-differential Recording and AGC Using Microcontrolled Variable Gain ASIC,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 47-54, January 2013.
[7]. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2011.
[8]. E. M. Camacho-Galeano, C. Galup-Montoro and M. C. Schneider, “A 2-nW 1.1-V self-biased current reference in CMOS technology,” IEEE Transactions On Circuits and Systems—II: Express Briefs, vol. 52, no. 2, pp. 61-65, Feb. 2005.
[9]. K. Kiyoyama, M. Onoda, and Y. Tanaka, "A low current consumption CMOS latched comparator for body-implanted chip," in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, Vol. 3, pp. 1940-1943, May 2005.
[10]. Y.-Y. Pan, "A Wide-range Integrated Bio-Signal Amplifier System", M. Eng. Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, Jul. 2008.
[11]. C.-C. Wang, T.-J. Lee, C.-C. Li, and R. Hu, “An All-MOS High Linearity Voltage-to-Frequency Converter Chip with 520 KHz/V Sensitivity,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems 2006, pp. 267-270, Dec. 2006.
[12]. Y.-B. Lin, “Design of a programmable multi-parameter amplifier front-end for bio-potential recording”, M. Eng. Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, Jul. 2011.
[13]. Texas Instruments, “LM134/LM234/LM334 3-Terminal Adjustable Current Sources”, Texas Instruments, May 2013.
[14]. Microchip, “PIC18F2420/2520/4420/4520 28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology”, Microchip Technology Inc., 2008.
[15]. Texas Instruments, “LM124-N/LM224-N/LM324-N/LM2902-N Low Power Quad Operational Amplifiers”, Texas Instruments, Sep. 2004.
[16]. Texas Instruments, “LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors”, Texas Instruments, March 2013.
[17]. H. C. Chow, B.W. Chen, H. C. Chen, and W. S. Feng, “A 1.8V, 0.3mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications,” IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 736-739, May 2005.
[18]. L. Zhong, H. Yang, and C. Zhang, “Design of an embedded CMOS CR SAR ADC for low power applications in bio-sensor SOC,” in ASICON 2007, pp. 668-671, Oct. 2007.
[19]. W.-Y. Pang, C.-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications” in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC) 2009, pp.149-152, Nov. 2009.
[20]. Y.-T Lin, Y.-S Lin, C.-H. Chen, H.-S. Chen, Y.-C. Yang, and S.-S. Lu,“A 0.5-V biomedical system-on-a-chip for intrabody communication system,” IEEE T. Ind. Electron., vol. 58, no. 2, pp. 690–699, Feb. 2011.
[21]. G. Wu, G. Deyuan, C. Hu-Guo, and H. Yann, “Design of a 12-Bit 2.5 MS/s Integrated Multi-Channel Single-Ramp Analog-to-Digital Converter for Imaging Detector Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6, pp. 1942-1951, June 2011.
[22]. S.P. Kopparthy, I. Makwana, and A. Gupta, “An asynchronous 8-bit 5 MS/s pipelined ADC for biomedical sensor based applications,” in Proc. IEEE CONNECT 2013, pp. 1-6, Jan. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code