Responsive image
博碩士論文 etd-0826113-170307 詳細資訊
Title page for etd-0826113-170307
論文名稱
Title
一個海洋胜肽對於神經病變性大白鼠之止痛作用
The anti-nociceptive effects of a marine-derived peptide in neuropathic rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-23
繳交日期
Date of Submission
2013-09-27
關鍵字
Keywords
神經病理性疼痛、海洋胜肽、坐骨神經結紮、微膠質細胞
neuropathic pain, microglia, chronic constrictive injury, marine-derived peptide
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
近年來,由海洋生物衍生而得的胜肽應用於新藥開發已被視為具有相當的潛力。最近我們發現海洋生物衍生胜肽PCD-1具有生物活性,在先前的研究顯示,它具有抗發炎的特性。神經發炎對於神經病理性疼痛扮演著相當重要的角色,目前並沒有有效的藥物能夠治療神經病理性疼痛。在本研究中,我們分析PCD-1對於大白鼠慢性窄縮性損傷引起神經病變的鎮痛和抗神經發炎的作用。實驗結果發現,當椎管給予PCD-1於慢性窄縮性損傷引起神經病變的大白鼠對於thermal hyperalgesia、mechanical allodynia、weight bearing及cold allodynia等疼痛行為皆有顯著抑制之效果,並且呈現劑量依賴效應。此外,亦可抑制因慢性窄縮性損傷而導致的脊髓神經發炎。在這些實驗結果的基礎上,PCD-1是有相當大的潛力可以被用來做為一個神經病理性疼痛的治療劑。
Abstract
In recent years, marine organism-derived peptides have been identified as new and potential sources for drug development. Recently, we found that the marine organism-derived peptide, PCD-1 was biologically active, and previous studies have indicated that it have anti-inflammatory properties. The neuroinflammatory processes are known to play a critical role in the development and maintenance of neuropathic pain, for which no effective drugs are currently available. In the present study, we investigated the anti-analgesic and anti-neuroinflammatory effects of the PCD-1 on chronic constriction injury-induced neuropathy in rats. We found that intrathecal injection of PCD-1 produced a significant and dose-dependent inhibition of thermal hyperalgesia, mechanical allodynia, weight bearing, and cold allodynia in neuropathic rats after CCI surgery. Moreover, it also attenuated CCI-induced spinal neuroinflammation. On the basis of these experimental results, we suggest that PCD-1 could be used as a potential therapeutic agent for neuropathic pain.
目次 Table of Contents
論文審定書 i
致謝.. ii
中文摘要. iii
英文摘要.. iv
圖目錄 ix
表目錄 xi
中英對照及縮寫表 xii
壹、前言 . 1
疼痛 1
神經病理性疼痛 . 2
神經病理性疼痛致病機轉 6
Glia cell 在神經病變性疼痛之角色 7
神經發炎(neuroinflammation)與神經病理性疼痛關聯性 . 9
現今治療藥物及副作用 . 9
海洋應用於藥物開發利基 .. 13
海洋胜肽來源 16
海洋胜肽種類 17
海洋胜肽之特性與用途 .. 18
海洋胜肽在哺乳類之應用 .. 21
海洋衍生胜肽PCD 家族 . 24
研究動機與目的 24
貳、實驗材料與方法 . 26
實驗細胞與培養 26
小鼠巨噬細胞培養 .. 26
小鼠神經膠質細胞培養 .. 26
動物準備 26
椎管製備 27
試劑藥品 27
抗體 28
儀器 28
離體模式 30
利用LPS 刺激小鼠巨噬細胞表現iNOS 與COX-II 30
利用LPS 刺激glia cell 表現iNOS 與COX-II . 30
利用interferon-gamma (INF-γ)刺激microglia 表現iNOS 與COX-II 30
西方點墨法分析 (Westeron blot asay) . 30
細胞毒殺檢測 31
活體實驗 32
椎管手術 32
坐骨神經結紮誘發神經病理性疼痛模式 32
疼痛行為評估方法 .. 33
脊髓組織樣品收集 .. 38
組織切片及免疫染色步驟 . 38
動物實驗設計及分組 . 39
統計分析 40
參、結果 .. 41
PCD-1 在三種離體模式之抗發炎活性作用 .. 41
PCD-1 對於LPS 誘發小鼠巨噬細胞抗發炎之作用 . 41
PCD-1 對於LPS 誘發microglia 抗發炎之作用 41
PCD-1 對於INF-誘發microglia 抗發炎之作用 .. 42
PCD-1 對於小鼠巨噬細胞和小鼠神經膠質細胞存活率影響 42
PCD-1 對於神經病理性疼痛之作用 43
椎管給予PCD-1 對於CCI 大白鼠之鎮痛劑量依賴效應 . 43
利用疼痛行為評估椎管給予PCD-1 (20 μg)對於CCI 大白鼠之鎮痛作用 .. 43
PCD-1 對於CCI 大白鼠之weight bearing 改變的影響 .. 43
PCD-1 對於CCI 大白鼠之mechanical allodynia 的影響 .. 43
PCD-1 對於CCI 大白鼠之cold allodynia 疼痛行為的影響 44
PCD-1 對於CCI 大白鼠之thermal hyperalgesia 疼痛行為的影響 . 44
椎管給予PCD-1 對於CCI 大白鼠脊髓組織分子之影響 . 45
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域microglia 活化之影響 .. 45
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域astrocyte 活化之影響 . 45
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域TNF-α上升之影響 . 46
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域p-ERK 上升之影響 .. 46
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域p-p38 上升之影響 . 46
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域IL-1β上升之影響 47
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域p-mTOR 上升之影響 47
椎管給予PCD-1 對於CCI 誘發p-mTOR 在microglia、astrocyte 及neuron之影響 47
PCD-1 對於CCI 大白鼠所誘發脊髓背角區域TGF-β1 下降之影響 . 48
椎管給予PCD-1 對於CCI 誘發TGF-β1在microglia、astrocyte 及neuron 之影響 . 48
椎管給予gabapentin 對於CCI 大白鼠之鎮痛的劑量依賴效應 . 49
PCD-1 與gabapentin 的半數有效鎮痛劑量的差異 . 49
PCD-1 對於CCI 大白鼠安全性測試 49
肆、討論 .. 72
PCD-1 之離體抗發炎活性 . 72
PCD-1 抑制CCI 大白鼠之疼痛作用 73
椎管給予PCD-1 對於CCI 大白鼠之脊髓背角訊息分子之影響 75
PCD-1 對於microglia 的影響 75
PCD-1 對於arstrocyte 的影響 . 76
PCD-1 對於TNF-α 的影響 76
PCD-1 對於MAPK 的影響 77
PCD-1 對於IL-1β、TGF-β1 的影響 . 78
PCD-1 對於細胞因子mTOR 的影響 .. 79
PCD-1 抑制神經病理性疼痛之作用探討 .. 80
海洋胜肽PCD-1 未來展望 . 82
參考文獻 .. 83
附錄一、染色拍照分析 95
參考文獻 References
1. C. L. Stucky, M. S. Gold, X. Zhang, Mechanisms of pain. Proceedings of the National Academy of Sciences of the United States of America 98, 11845 (Oct 9, 2001).
2. N. Jimenez, E. Garroutte, A. Kundu, L. Morales, D. Buchwald, A review of the experience, epidemiology, and management of pain among American Indian, Alaska Native, and Aboriginal Canadian peoples. The journal of pain : official journal of the American Pain Society 12, 511 (May, 2011).
3. B. Sessle, Unrelieved pain: a crisis. Pain research & management : the journal of the Canadian Pain Society = journal de la societe canadienne pour le traitement de la douleur 16, 416 (Nov-Dec, 2011).
4. J. N. Campbell, R. A. Meyer, Mechanisms of neuropathic pain. Neuron 52, 77 (Oct 5, 2006).
5. H. Ueda, Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Molecular pain 4, 11 (2008).
6. H. Ueda, Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacology & therapeutics 109, 57 (Jan, 2006).
7. E. D. Milligan, L. R. Watkins, Pathological and protective roles of glia in chronic pain. Nature reviews. Neuroscience 10, 23 (Jan, 2009).
8. B. Xu, G. Descalzi, H. R. Ye, M. Zhuo, Y. W. Wang, Translational investigation and treatment of neuropathic pain. Molecular pain 8, 15 (2012).
9. L. X. Wang, Z. J. Wang, Animal and cellular models of chronic pain. Advanced drug delivery reviews 55, 949 (Aug 28, 2003).
10. P. J. Austin, G. Moalem-Taylor, The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. Journal of neuroimmunology 229, 26 (Dec 15, 2010).
11. S. B. McMahon, W. B. Cafferty, F. Marchand, Immune and glial cell factors as pain mediators and modulators. Experimental neurology 192, 444 (Apr, 2005).
12. L. Nicotra, L. C. Loram, L. R. Watkins, M. R. Hutchinson, Toll-like receptors in chronic pain. Experimental neurology 234, 316 (Apr, 2012).
13. R. D. Gosselin, M. R. Suter, R. R. Ji, I. Decosterd, Glial cells and chronic pain. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 16, 519 (Oct, 2010).
14. J. R. Faulkner et al., Reactive astrocytes protect tissue and preserve function after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 2143 (Mar 3, 2004).
15. J. Gehrmann, Y. Matsumoto, G. W. Kreutzberg, Microglia: intrinsic immuneffector cell of the brain. Brain research. Brain research reviews 20, 269 (Mar, 1995).
16. R. R. Ji, M. R. Suter, p38 MAPK, microglial signaling, and neuropathic pain. Molecular pain 3, 33 (2007).
17. N. Uceyler, M. Schafers, C. Sommer, Mode of action of cytokines on nociceptive neurons. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 196, 67 (Jun, 2009).
18. L. R. Watkins, S. F. Maier, Glia: a novel drug discovery target for clinical pain. Nature reviews. Drug discovery 2, 973 (Dec, 2003).
19. O. Pascual et al., Astrocytic purinergic signaling coordinates synaptic networks. Science (New York, N.Y.) 310, 113 (Oct 7, 2005).
20. G. Seifert, K. Schilling, C. Steinhauser, Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature reviews. Neuroscience 7, 194 (Mar, 2006).
21. Y. J. Gao, R. R. Ji, Targeting astrocyte signaling for chronic pain. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7, 482 (Oct, 2010).
22. A. Aguzzi, B. A. Barres, M. L. Bennett, Microglia: scapegoat, saboteur, or something else? Science (New York, N.Y.) 339, 156 (Jan 11, 2013).
23. M. Zhuo, G. Wu, L. J. Wu, Neuronal and microglial mechanisms of neuropathic pain. Molecular brain 4, 31 (2011).
24. K. Inoue, M. Tsuda, Microglia and neuropathic pain. Glia 57, 1469 (Nov 1, 2009).
25. T. M. Tikka, J. E. Koistinaho, Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. Journal of immunology (Baltimore, Md. : 1950) 166, 7527 (Jun 15, 2001).
26. J. Mika, M. Zychowska, K. Popiolek-Barczyk, E. Rojewska, B. Przewlocka, Importance of glial activation in neuropathic pain. European journal of pharmacology, (Mar 13, 2013).
27. M. Svensson et al., The response of central glia to peripheral nerve injury. Brain research bulletin 30, 499 (1993).
28. D. Giulian, J. Li, B. Leara, C. Keenen, Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochemistry international 25, 227 (Sep, 1994).
29. G. W. Kreutzberg, Microglia: a sensor for pathological events in the CNS. Trends in neurosciences 19, 312 (Aug, 1996).
30. E. D. Milligan, E. M. Sloane, L. R. Watkins, Glia in pathological pain: a role for fractalkine. Journal of neuroimmunology 198, 113 (Jul 31, 2008).
31. J. Mika, M. Osikowicz, W. Makuch, B. Przewlocka, Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. European journal of pharmacology 560, 142 (Apr 10, 2007).
32. M. Malcangio, N. G. Bowery, R. J. Flower, M. Perretti, Effect of interleukin-1 beta on the release of substance P from rat isolated spinal cord. European journal of pharmacology 299, 113 (Mar 28, 1996).
33. T. Oka, S. Aou, T. Hori, Intracerebroventricular injection of interleukin-1 beta induces hyperalgesia in rats. Brain research 624, 61 (Oct 8, 1993).
34. S. Nadeau et al., Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 12533 (Aug 31, 2011).
35. R. Baron, A. Binder, G. Wasner, Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet neurology 9, 807 (Aug, 2010).
36. H. Y. Zhou, S. R. Chen, H. L. Pan, Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert review of clinical pharmacology 4, 379 (May, 2011).
37. D. Singh, D. H. Kennedy, The use of gabapentin for the treatment of postherpetic neuralgia. Clinical therapeutics 25, 852 (Mar, 2003).
38. B. M. Olivera, R. W. Teichert, Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Molecular interventions 7, 251 (Oct, 2007).
39. B. M. Olivera, Conus peptides: biodiversity-based discovery and exogenomics. The Journal of biological chemistry 281, 31173 (Oct 20, 2006).
40. J. G. McGivern, Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatric disease and treatment 3, 69 (Feb, 2007).
41. A. Nicke, S. Wonnacott, R. J. Lewis, Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. European journal of biochemistry / FEBS 271, 2305 (Jun, 2004).
42. E. Leipold, A. Hansel, B. M. Olivera, H. Terlau, S. H. Heinemann, Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS letters 579, 3881 (Jul 18, 2005).
43. K. J. Shon et al., kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. The Journal of biological chemistry 273, 33 (Jan 2, 1998).
44. R. A. Li, G. F. Tomaselli, Using the deadly mu-conotoxins as probes of voltage-gated sodium channels. Toxicon : official journal of the International Society on Toxinology 44, 117 (Aug, 2004).
45. K. Gohil, J. R. Bell, J. Ramachandran, G. P. Miljanich, Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 (omega-conopeptide MVIIC). Brain research 653, 258 (Aug 8, 1994).
46. A. Schmidtko, J. Lotsch, R. Freynhagen, G. Geisslinger, Ziconotide for treatment of severe chronic pain. Lancet 375, 1569 (May 1, 2010).
47. G. P. Miljanich, Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Current medicinal chemistry 11, 3029 (Dec, 2004).
48. B. M. Olivera et al., Diversity of Conus neuropeptides. Science (New York, N.Y.) 249, 257 (Jul 20, 1990).
49. D. P. Wermeling, Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 25, 1084 (Aug, 2005).
50. M. S. Wallace, Ziconotide: a new nonopioid intrathecal analgesic for the treatment of chronic pain. Expert review of neurotherapeutics 6, 1423 (Oct, 2006).
51. T. P. Snutch, Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2, 662 (Oct, 2005).
52. C. Maier, H. H. Gockel, K. Gruhn, E. K. Krumova, M. A. Edel, Increased risk of suicide under intrathecal ziconotide treatment? - a warning. Pain 152, 235 (Jan, 2011).
53. G. Burgess, D. Williams, The discovery and development of analgesics: new mechanisms, new modalities. The Journal of clinical investigation 120, 3753 (Nov, 2010).
54. S. V. Sperstad et al., Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnology advances 29, 519 (Sep-Oct, 2011).
55. S. C. Lee, C. Y. Pan, J. Y. Chen, The antimicrobial peptide, epinecidin-1, mediates secretion of cytokines in the immune response to bacterial infection in mice. Peptides 36, 100 (Jul, 2012).
56. P. H. Huang, J. Y. Chen, C. M. Kuo, Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Molecular immunology 44, 1922 (Mar, 2007).
57. W. Wang et al., Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 33, 212 (Feb, 2012).
58. A. M. Cole, P. Weis, G. Diamond, Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of biological chemistry 272, 12008 (May 2, 1997).
59. C. B. Park, J. H. Lee, I. Y. Park, M. S. Kim, S. C. Kim, A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS letters 411, 173 (Jul 14, 1997).
60. I. Y. Park, C. B. Park, M. S. Kim, S. C. Kim, Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS letters 437, 258 (Oct 23, 1998).
61. R. E. Hancock, Cationic peptides: effectors in innate immunity and novel antimicrobials. The Lancet infectious diseases 1, 156 (Oct, 2001).
62. J. Menousek et al., Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. International journal of antimicrobial agents 39, 402 (May, 2012).
63. Y. Park, K. S. Hahm, Antimicrobial peptides (AMPs): peptide structure and mode of action. Journal of biochemistry and molecular biology 38, 507 (Sep 30, 2005).
64. G. Wang, X. Li, Z. Wang, APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic acids research 37, D933 (Jan, 2009).
65. K. L. Brown, R. E. Hancock, Cationic host defense (antimicrobial) peptides. Current opinion in immunology 18, 24 (Feb, 2006).
66. N. Papo, Y. Shai, Host defense peptides as new weapons in cancer treatment. Cellular and molecular life sciences : CMLS 62, 784 (Apr, 2005).
67. A. M. Cole, Antimicrobial peptide microbicides targeting HIV. Protein and peptide letters 12, 41 (Jan, 2005).
68. T. Ganz, Antimicrobial polypeptides. Journal of leukocyte biology 75, 34 (Jan, 2004).
69. R. M. Epand, H. J. Vogel, Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et biophysica acta 1462, 11 (Dec 15, 1999).
70. A. Tossi, L. Sandri, A. Giangaspero, Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55, 4 (2000).
71. P. Bulet, R. Stocklin, L. Menin, Anti-microbial peptides: from invertebrates to vertebrates. Immunological reviews 198, 169 (Apr, 2004).
72. K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 3, 238 (Mar, 2005).
73. D. Brewer, H. Hunter, G. Lajoie, NMR studies of the antimicrobial salivary peptides histatin 3 and histatin 5 in aqueous and nonaqueous solutions. Biochemistry and cell biology = Biochimie et biologie cellulaire 76, 247 (1998).
74. E. J. Helmerhorst et al., The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. The Journal of biological chemistry 274, 7286 (Mar 12, 1999).
75. H. Tsai, L. A. Bobek, Human salivary histatins: promising anti-fungal therapeutic agents. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 9, 480 (1998).
76. H. W. Huang, Action of antimicrobial peptides: two-state model. Biochemistry 39, 8347 (Jul 25, 2000).
77. K. Glinel, P. Thebault, V. Humblot, C. M. Pradier, T. Jouenne, Antibacterial surfaces developed from bio-inspired approaches. Acta biomaterialia 8, 1670 (May, 2012).
78. D. Westphal, G. Dewson, P. E. Czabotar, R. M. Kluck, Molecular biology of Bax and Bak activation and action. Biochimica et biophysica acta 1813, 521 (Apr, 2011).
79. Y. Nakajima, X. M. Qu, S. Natori, Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). The Journal of biological chemistry 262, 1665 (Feb 5, 1987).
80. M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415, 389 (Jan 24, 2002).
81. K. Matsuzaki, Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et biophysica acta 1462, 1 (Dec 15, 1999).
82. O. Sorensen, T. Bratt, A. H. Johnsen, M. T. Madsen, N. Borregaard, The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. The Journal of biological chemistry 274, 22445 (Aug 6, 1999).
83. Y. Lai, R. L. Gallo, AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in immunology 30, 131 (Mar, 2009).
84. V. L. Hoang, S. K. Kim, Antimicrobial Peptides From Marine Sources. Current protein & peptide science, (May 28, 2013).
85. E. Lien et al., Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. The Journal of clinical investigation 105, 497 (Feb, 2000).
86. R. E. Hancock, M. G. Scott, The role of antimicrobial peptides in animal defenses. Proceedings of the National Academy of Sciences of the United States of America 97, 8856 (Aug 1, 2000).
87. M. G. Scott, A. C. Vreugdenhil, W. A. Buurman, R. E. Hancock, M. R. Gold, Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. Journal of immunology (Baltimore, Md. : 1950) 164, 549 (Jan 15, 2000).
88. R. R. Myers, W. M. Campana, V. I. Shubayev, The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug discovery today 11, 8 (Jan, 2006).
89. J. O'Brien, I. Wilson, T. Orton, F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry / FEBS 267, 5421 (Sep, 2000).
90. T. L. Yaksh, T. A. Rudy, Chronic catheterization of the spinal subarachnoid space. Physiology & behavior 17, 1031 (Dec, 1976).
91. S. Y. Huang et al., Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Marine drugs 10, 1899 (Sep, 2012).
92. J. Fernihough et al., Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 112, 83 (Nov, 2004).
93. Y. C. Lin et al., Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behavioural pharmacology 22, 739 (Dec, 2011).
94. T. J. Coderre, P. D. Wall, Ankle joint urate arthritis (AJUA) in rats: an alternative animal model of arthritis to that produced by Freund's adjuvant. Pain 28, 379 (Mar, 1987).
95. K. Hargreaves, R. Dubner, F. Brown, C. Flores, J. Joris, A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77 (Jan, 1988).
96. Y. H. Jean et al., Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. European journal of pharmacology 578, 323 (Jan 14, 2008).
97. S. J. Flatters, G. J. Bennett, Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109, 150 (May, 2004).
98. S. Urakawa et al., Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats. Neuroscience 144, 920 (Feb 9, 2007).
99. B. Sung, G. Lim, J. Mao, Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2899 (Apr 1, 2003).
100. W. F. Chen et al., Intrathecally injected granulocyte colony-stimulating factor produced neuroprotective effects in spinal cord ischemia via the mitogen-activated protein kinase and Akt pathways. Neuroscience 153, 31 (Apr 22, 2008).
101. F. Caraci et al., TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiology of disease 30, 234 (May, 2008).
102. Y. L. Lai, P. M. Smith, W. J. Lamm, J. Hildebrandt, Sampling and analysis of cerebrospinal fluid for chronic studies in awake rats. Journal of applied physiology: respiratory, environmental and exercise physiology 54, 1754 (Jun, 1983).
103. X. Zhang, D. M. Mosser, Macrophage activation by endogenous danger signals. The Journal of pathology 214, 161 (Jan, 2008).
104. R. E. Hancock, G. Diamond, The role of cationic antimicrobial peptides in innate host defences. Trends in microbiology 8, 402 (Sep, 2000).
105. Y. K. Kim et al., In vitro antiinflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW 264.7 cells. Biological & pharmaceutical bulletin 25, 472 (Apr, 2002).
106. J. H. Choi et al., Flowers of Inula japonica Attenuate Inflammatory Responses. Immune network 10, 145 (Oct, 2010).
107. A. Vakili, M. Shirvanian, H. Safakhah, A. Rashidy-Pour, Pentoxifylline decreases allodynia and hyperalgesia in a rat model of neuropathic pain. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences 19, 306 (2011).
108. H. Xing, M. Chen, J. Ling, W. Tan, J. G. Gu, TRPM8 mechanism of cold allodynia after chronic nerve injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 13680 (Dec 12, 2007).
109. E. Nakazato-Imasato, Y. Kurebayashi, Pharmacological characteristics of the hind paw weight bearing difference induced by chronic constriction injury of the sciatic nerve in rats. Life sciences 84, 622 (Apr 24, 2009).
110. T. D. Wilson-Gerwing, M. V. Dmyterko, D. W. Zochodne, J. M. Johnston, V. M. Verge, Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 758 (Jan 19, 2005).
111. D. Zurowski, L. Nowak, A. Machowska, J. Wordliczek, P. J. Thor, Exogenous melatonin abolishes mechanical allodynia but not thermal hyperalgesia in neuropathic pain. The role of the opioid system and benzodiazepine-gabaergic mechanism. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 63, 641 (Dec, 2012).
112. C. K. Nielsen et al., Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 118, 112 (Nov, 2005).
113. J. R. Jorgensen et al., Meteorin reverses hypersensitivity in rat models of neuropathic pain. Experimental neurology 237, 260 (Oct, 2012).
114. A. Kukkar, N. Singh, A. S. Jaggi, Neuropathic pain-attenuating potential of aliskiren in chronic constriction injury model in rats. Journal of the renin-angiotensin-aldosterone system : JRAAS 14, 116 (Jun, 2013).
115. J. L. Arruda, R. W. Colburn, A. J. Rickman, M. D. Rutkowski, J. A. DeLeo, Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain research. Molecular brain research 62, 228 (Nov 20, 1998).
116. K. Li, Y. H. Tan, A. R. Light, K. Y. Fu, Different peripheral tissue injury induces differential phenotypic changes of spinal activated microglia. Clinical & developmental immunology 2013, 901420 (2013).
117. N. N. Pathak et al., Antihyperalgesic and Anti-inflammatory Effects of Atorvastatin in Chronic Constriction Injury-Induced Neuropathic Pain in Rats. Inflammation, (Jul 20, 2013).
118. F. Wu et al., Inhibition of GAP-43 by propentofylline in a rat model of neuropathic pain. International journal of clinical and experimental pathology 6, 1516 (2013).
119. B. C. Hains, C. Y. Saab, J. P. Klein, M. J. Craner, S. G. Waxman, Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 4832 (May 19, 2004).
120. L. Vitkovic, J. Bockaert, C. Jacque, "Inflammatory" cytokines: neuromodulators in normal brain? Journal of neurochemistry 74, 457 (Feb, 2000).
121. J. T. Xu, W. J. Xin, Y. Zang, C. Y. Wu, X. G. Liu, The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 123, 306 (Aug, 2006).
122. J. M. Cuellar, P. X. Montesano, E. Carstens, Role of TNF-alpha in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain 110, 578 (Aug, 2004).
123. Y. Homma, S. J. Brull, J. M. Zhang, A comparison of chronic pain behavior following local application of tumor necrosis factor alpha to the normal and mechanically compressed lumbar ganglia in the rat. Pain 95, 239 (Feb, 2002).
124. A. Onda, S. Yabuki, S. Kikuchi, Effects of neutralizing antibodies to tumor necrosis factor-alpha on nucleus pulposus-induced abnormal nociresponses in rat dorsal horn neurons. Spine 28, 967 (May 15, 2003).
125. C. Widmann, S. Gibson, M. B. Jarpe, G. L. Johnson, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiological reviews 79, 143 (Jan, 1999).
126. R. R. Ji, C. J. Woolf, Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiology of disease 8, 1 (Feb, 2001).
127. L. R. Watkins, E. D. Milligan, S. F. Maier, Glial activation: a driving force for pathological pain. Trends in neurosciences 24, 450 (Aug, 2001).
128. B. C. Hains, S. G. Waxman, Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 4308 (Apr 19, 2006).
129. L. Xu et al., The influence of p38 mitogen-activated protein kinase inhibitor on synthesis of inflammatory cytokine tumor necrosis factor alpha in spinal cord of rats with chronic constriction injury. Anesthesia and analgesia 105, 1838 (Dec, 2007).
130. S. Y. Kim et al., Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport 13, 2483 (Dec 20, 2002).
131. S. X. Jin, Z. Y. Zhuang, C. J. Woolf, R. R. Ji, p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 4017 (May 15, 2003).
132. Y. W. Gu, D. S. Su, J. Tian, X. R. Wang, Attenuating phosphorylation of p38 MAPK in the activated microglia: a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats. Neuroscience letters 431, 129 (Jan 31, 2008).
133. R. R. Ji, H. Baba, G. J. Brenner, C. J. Woolf, Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature neuroscience 2, 1114 (Dec, 1999).
134. W. Ma, R. Quirion, The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert opinion on therapeutic targets 9, 699 (Aug, 2005).
135. K. O. Aley et al., Nociceptor sensitization by extracellular signal-regulated kinases. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 6933 (Sep 1, 2001).
136. D. Seino et al., The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123, 193 (Jul, 2006).
137. F. T. Ji, J. J. Liang, L. Liu, M. H. Cao, F. Li, Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury. Chinese medical journal 126, 1125 (Mar, 2013).
138. L. R. Watkins, K. T. Nguyen, J. E. Lee, S. F. Maier, Dynamic regulation of proinflammatory cytokines. Advances in experimental medicine and biology 461, 153 (1999).
139. R. L. Follenfant, M. Nakamura-Craig, B. Henderson, G. A. Higgs, Inhibition by neuropeptides of interleukin-1 beta-induced, prostaglandin-independent hyperalgesia. British journal of pharmacology 98, 41 (Sep, 1989).
140. E. D. Milligan et al., Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 2808 (Apr 15, 2001).
141. N. Kiguchi, T. Maeda, Y. Kobayashi, Y. Fukazawa, S. Kishioka, Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain 149, 305 (May, 2010).
142. C. Sommer, S. Petrausch, T. Lindenlaub, K. V. Toyka, Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neuroscience letters 270, 25 (Jul 23, 1999).
143. W. Wang et al., Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain, behavior, and immunity 25, 1355 (Oct, 2011).
144. M. Bottner, K. Krieglstein, K. Unsicker, The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. Journal of neurochemistry 75, 2227 (Dec, 2000).
145. A. Suzumura, M. Sawada, H. Yamamoto, T. Marunouchi, Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. Journal of immunology (Baltimore, Md. : 1950) 151, 2150 (Aug 15, 1993).
146. E. N. Benveniste, L. P. Tang, R. M. Law, Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 13, 341 (Jun-Jul, 1995).
147. S. Echeverry et al., Transforming growth factor-beta1 impairs neuropathic pain through pleiotropic effects. Molecular pain 5, 16 (2009).
148. K. Strle et al., Interleukin-10 in the brain. Critical reviews in immunology 21, 427 (2001).
149. L. Swiech, M. Perycz, A. Malik, J. Jaworski, Role of mTOR in physiology and pathology of the nervous system. Biochimica et biophysica acta 1784, 116 (Jan, 2008).
150. J. Jaworski, M. Sheng, The growing role of mTOR in neuronal development and plasticity. Molecular neurobiology 34, 205 (Dec, 2006).
151. N. Hay, N. Sonenberg, Upstream and downstream of mTOR. Genes & development 18, 1926 (Aug 15, 2004).
152. L. Lisi, P. Navarra, D. L. Feinstein, C. Dello Russo, The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. Journal of neuroinflammation 8, 1 (2011).
153. E. Jacinto et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature cell biology 6, 1122 (Nov, 2004).
154. N. Oshiro et al., Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes to cells : devoted to molecular & cellular mechanisms 9, 359 (Apr, 2004).
155. M. H. Shih, S. C. Kao, W. Wang, M. Yaster, Y. X. Tao, Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. The journal of pain : official journal of the American Pain Society 13, 338 (Apr, 2012).
156. Q. Xu et al., Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 2113 (Feb 9, 2011).
157. I. Obara et al., Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 152, 2582 (Nov, 2011).
158. E. Norsted Gregory, S. Codeluppi, J. A. Gregory, J. Steinauer, C. I. Svensson, Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience 169, 1392 (Sep 1, 2010).
159. R. E. Hancock, H. G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology 24, 1551 (Dec, 2006).
160. L. D. Owens, T. M. Heutte, A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Molecular plant-microbe interactions : MPMI 10, 525 (May, 1997).
161. A. J. Todd, Neuronal circuitry for pain processing in the dorsal horn. Nature reviews. Neuroscience 11, 823 (Dec, 2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.145.114
論文開放下載的時間是 校外不公開

Your IP address is 18.118.145.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code