Responsive image
博碩士論文 etd-0827102-165358 詳細資訊
Title page for etd-0827102-165358
論文名稱
Title
電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址
Pilot-Scale In Situ Treatment of a Chlorinated Hydrocarbons Contaminated Site by Combined Technologies of Electrokinetic Processing-Fenton Process – Catalytic Iron Wall
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-28
繳交日期
Date of Submission
2002-08-27
關鍵字
Keywords
三氯乙烯、催化性鐵粉牆、土壤污染、Fenton法、四氯乙烷、電動力法
tetrachloroethane, Soil Contamination, Catalytic Iron Wall, Electrokinetic Processing, Fenton Process
統計
Statistics
本論文已被瀏覽 5679 次,被下載 5423
The thesis/dissertation has been browsed 5679 times, has been downloaded 5423 times.
中文摘要
本研究以含氯的有機物作為整治試驗之主要標的污染物,探討採用電動力法-Fenton法-催化性鐵粉牆組合技術之整治成效,並藉由L9直交表實驗配置及統計分析,探討不同操作條件下(包括:過氧化氫濃度、鐵粉粒徑、鐵粉添加量、處理時間…等)對於處理效率之效應。由九組定電壓(1V/cm)操作結果的變異數分析(ANOVA)後得知,實驗因子中的過氧化氫濃度、鐵粉添加量與處理時間對1,1,2,2-四氯乙烷(TeCA)之破壞去除率具有非常顯著的影響效果,其貢獻率分別為15.64﹪、11.00﹪與70.87﹪;而實驗因子B(鐵粉粒徑)於本研究中之貢獻率則可忽略不計。由L9直交表實驗結果分析可推估出,本系統在定電壓操作下對於1,1,2,2-四氯乙烷破壞去除之最佳操作條件為過氧化氫濃度2%、鐵粉粒徑50-100 mesh、鐵粉添加量0.2 wt%及處理時間20 days,而在此最佳操作條件下,所得到之總破壞去除率為69.56﹪,操作費用約為672.9元/立方公尺。另外,本研究亦發現,對於電滲透流流量及總破壞去除率而言,定電流操作較定電壓操作好。另外,Test 13在定電流(11mA)操作下,土樣中之1,1,2,2-四氯乙烷總破壞去除率最高(達83.4﹪),其操作費用約為933.8元/立方公尺。
本研究經由人工配製污染土壤管柱實驗結果證實TCE為TeCA降解之中間產物,且發現以電動力法-Fenton法-催化性鐵粉牆組合技術(Test 17)或電動力法-Fenton法,但未加鐵粉(Test 18)處理TeCA時,主要是因破壞所造成,而只用電動力法(Test 19)處理TeCA時則以移除機制為主。本研究之現地模場試驗經九天之整治即可見顯著之成效,陽極井和陰極井中之氯乙烯、二氯乙烷其破壞去除率分別達到96%以上(前兩者)及94%以上,且陽極井及陰極井之三氯乙烯濃度皆已降至法規管制標準(2μg/L)以下,且大略算出操作成本約為57.5 元/立方公尺。



Abstract
This research was to evaluate the treatment efficiency of a chlorinated hydrocarbons contaminated site by combined technologies of electrokinetic processing-Fenton process-catalytic iron wall. The L9 orthogonal arrays were utilized to investigate the effects of four experimental factors (i.e., H2O2 concentration, size fraction of iron particles, mass of iron particles and elapsed time) on the treatment efficiency. The experimental results were further subjected to the analysis of variance (ANOVA) and regular analysis. According to the ANOVA of results of nine experiments conducted under an electric gradient of 1 V/cm, the H2O2 concentration, mass of iron particles and elapsed time were determined to be very significant parameters for the destruction and removal efficiency (DRE) of 1,1,2,2-tetrachloroethane (TeCA) . In this system, the optimal conditions with respect to the DRE of TeCA would be 2﹪H2O2, 50-100 mesh iron, 0.2 wt% iron and 20-day treatment time. Under this optimal conditions, it was able to obtain a DRE of 69.56% and the corresponding operating cost would be 672.9 NT$/m3.
Aside from the constant voltage operation, the constant current operation also was employed in this study. The latter was found to be superior to the former in terms of electroosmotic flow quantity and DRE.
Experimental results of soil column tests showed that TeCA was transformed to trichloroethylene (TCE). TCE could be regarded as a daughter product of TeCA degradation. Results of Tests 17 and 18 showed that destruction dominated the DRE of TeCA, whereas removal played a much more important role in the DRE of Test 19. Regarding the treatment efficiency of a 9-day pilot test using the same combined treatment technologies, it was found to be very satisfactory. DREs of vinyl chloride, dichloroethane, and TCE were found to be >96%, >96%, and >94%, respectively in the anode and cathode wells. The concentrations of TCE in both anode and cathode wells were found to be lower than the regulatory threshold (i.e., 2μg/L) and the operating cost was determined to be about NT$57.5/m3.




目次 Table of Contents
謝誌……………………………………………………………………….i
摘要………………………………………………………………………ii
Abstract.………………………………………………………………....iv
目錄……………………………………………………………………...vi
表目錄……………………………………………………………………x
圖目錄…………………………………………………………………..xii
照片目錄………………………………………………………………..xv
第一章 前言……………………..……..……..….………………….…1
1.1 研究緣起 ………………..…………..……….….……………1
1.2 研究目的 ……………………….……….……...….…….…...5
1.3 研究內容 ……………………………...…….……..…………6
第二章 文獻回顧 ……………...…………….………..………………7
2.1 電動力法 …………………………..…………….………..….7
2.1.1 電動力法之傳輸機制 …………………………...….....8
2.1.2電動力法之破壞機制……………………..............….....9
2.1.3 電動力法復育污染土壤之影響因子 …...….………..10
2.1.4 電動力法處理受有機物污染土壤之相關研究 ….….12
2.2 現地化學藥劑注入法 ………………..……….....………….16
2.2.1 氧化劑注入法 ……………...…...………..……...…...16
2.2.2 注入法的選擇 ……………….………..…..…...…......18
2.2.3 Fenton氧化法 …………..…….………..………....…..18
2.2.4 Fenton法之影響因子 ……….……..……..……….….20
2.2.5 Fenton法之優缺點 ………….……………..…….…...24
2.2.6 Fenton法處理土壤中有機污染物之研究 ……...…....24
2.3 透水性反應牆 ….....…………..……….……………….…...31
2.3.1 透水性反應牆之原理 ..……………………………....31
2.3.2 零價鐵之相關理論 …..…………….…….….…….....32
2.3.3 國內外相關研究 …..………….……………..….........36
2.3.4 反應牆現地應用之現況 …..….………..…….....…....40
2.4 含氯有機物 ………….……………..……….…....................43
2.4.1 含氯有機污染物之特性 ………….…….……............43
2.4.2 1,1,2,2-四氯乙烷之危害與管制 ….…………......…....46
2.4.3 三氯乙烯…………………….……………………...…50
第三章 實驗材料與方法 ……….……..…….....................................53
3.1 實驗材料 …….………..……………….................................53
3.1.1 土樣與前處理 ……..……………................................53
3.1.2 試藥及材料.................………………………...............53
3.2 實驗設備 …………………………………............................56
3.2.1 電動力法-Fenton法-催化性鐵粉牆組合技術實驗室管柱規模處理系統 ...…………...……..…..................56
3.2.2 其他儀器 ……………………..…..…..........................58
3.3 研究架構 …………………………..….........….....................59
3.4 土壤樣品及其特性分析 ………..…........……....................61
3.4.1 粒徑分佈 ………....................................……..............61
3.4.2 比重 ………..……............................................……....62
3.4.3 pH值 ……………………...….………………………63
3.4.4 含水份 …..…………………...…………...….……….64
3.4.5 有機物質含量 ……………..………………..………..65
3.4.6 灼燒減量 …….……………...……………….…….…65
3.4.7 陽離子交換容量 ………….…...….………………….65
3.4.8 比表面積 ………...……….…………….………..…...66
3.4.9 土壤中的鐵含量 ……………….……..…………...…67
3.5 實驗室管柱規模實驗 ……………….……….…….........….68
3.5.1 實際污染土壤管柱實驗 …..………….…………...…70
3.5.2 人工污染土配製實驗 …….………….…………...….71
3.6 管柱實驗之裝置 ……………….……………....…………...71
3.6.1 現地污染土 …..…………….……………...............…71
3.6.2 人工污染土配製及裝填 …..…………………........…71
3.6.3 污染土管柱裝填程序 ….………….……………........71
3.7 反應前後之分析及操作過程之監測 …………………....…73
3.7.1 反應前後之分析項目 ……..……...….…………....…73
3.7.2 操作過程之監測項目 …….…………....………….…74
3.8 實驗設計簡介 ……………….…………...……………........76
3.8.1 田口式實驗設計法-L9直交表 …………….………...76
3.8.2 L9直交表實驗結果分析 ……………...……......……78
3.9 電動力法-Fenton法-催化性鐵粉牆組合技術現地處理系
統..............................................................................................84
3.9.1 設置整治井及監測井 …………….………….......…..85
3.9.2 鐵粉催化區之設置 …………….…………….....……86
3.9.3 多深度VOCs監測系統之設置 ……………….….…87
3.9.4 電動力法-Fenton法-催化性鐵粉牆組合技術之操
作 ……………………….…………………………….89
第四章 結果與討論 ……………….………………………..….....…90
4.1 土壤樣品基本性質分析 ……..……….….……………....…90
4.1.1 pH值 ……….…………………………………….....…90
4.1.2 含水份 ………………….………………….……....…90
4.1.3 比重 …………………….……………….………....…90
4.1.4 有機物含量 ………………………………..……....…90
4.1.5 灼燒減量 ……………………………………..…....…90
4.1.6 陽離子交換容量 …………………..……………....…90
4.1.7 粒徑分布 ………………..………………………....…91
4.1.8 比表面積 ……………………..................…............…92
4.1.9 土壤中總鐵的含量 ……………..…..………..…....…92
4.2 標的污染物 ……………….………...…………………....…93
4.3 現地污染土壤管柱實驗 ……………….…………….......…94
4.3.1 操作過程之監測 ……………….…………...…......…94
4.3.2 反應前、後之分析 ……………….………..……..….97
4.3.3 1,1,2,2-四氯乙烷總破壞去除率 …………………...…98
4.3.4 定電流操作實驗 ………………………………........100
4.4 田口式實驗設計-L9直交表實驗分析 ...………………....101
4.4.1 特性值分析與正規分析 ………………………........101
4.4.2 變異數分析(ANOVA) ……………….……………....107
4.4.3 確認實驗 ………………………………………....…111
4.4.4 鐵粉扮演角色之探討 ……………….…….……..…119
4.4.5 定電流結合最佳操作條件 …………………………120
4.5 人工配製污染土壤管柱實驗 ………………………......…123
4.5.1操作過程之監測 ………….…………………..…..…123
4.5.2土壤處理前、後之分析 ……………..…………...…128
4.6 操作費用評估 ……………….…...………………………..132
4.7 現地模場整治 ……………….………………....………….134
4.8 綜合比較……………….…………….….……………….....138
第五章 結論與建議 …….……………...…………………….…….140
5.1 結論 …….………………………....……………………….140
5.2 建議 …….………………………....……………………….142
參考文獻 …………..…..……………………………………………..144
附錄…………………………………………………………………....160
參考文獻 References
1. “地下水及土壤污染防治策略” , http://www.tcppa.org.tw/bid/8806-3.htm, 2000。
2. U.S. EPA, Ground-Water Research-Research Description, EPA/600/9-89/088. Washington, D.C., 1989.
3. 葉桂君、黃文勝、黃茂盛、陳偉一,“通氣層土壤中含氯溶劑DNAPL之現地Fenton-like氧化探討”,第十六屆廢棄物處理技術研討會論文集光碟,高雄,2001。
4. “台灣環保新聞剪報”,http://www.taiwanwatch.org.tw/env_news/news199806.htm,19998。
5. 盧至人,「地下水的污染整治」,國立編譯館,台北,1997。
6. Lyman, W. J., D. C. Noonan, and P. J. Reidy, “Cleanup of Petroleum Contaminated Soils at Underground Storage Tanks”, Noyes Data Corporation, Park Ridge, N. J., U.S.A., 1990.
7. “Hazardous Waste Clean-Up Information”, http://www.cluin.org, 2000.
8. U.S. EPA, “Superfund Innovative Technology Evaluation Program”, Technology Profiles 10th Ed. Vol. 1, Demonstration Program, EPA/540/R99/500a, pp. 194-195; 202-203; 224-225, 1999.
9. Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bicka, R. Parker, “Electrokinetic Remediation: Basic and Technology Status”, Journal of Hazardous Materials, Vol. 40, No. 2, pp. 117-137, 1995.
10. 陳致谷、張添晉,“土壤污染生物復育技術之應用與展望”,工業污染防治,第53期,第113-138頁,1995。
11. Shapiro, A. P., P. C. Renaud, and R. F. Probstein, “Preliminary Studies on the Removal of Chemical Species from Saturated Porous Media by Electroosmosis”, Physicochemical Hydrodynamics, Vol. 11, No. 56, pp. 785-802, 1989.
12. Freeze, R. A. and J. A. Cherry, Groundwater, Prentice-Hall, Inc. Englewood Cliffs, N. J., 1967.
13. Horng, J. J., “A Model Study of Ionic Transport and Its Role in Electrokinetic Treatment of Contaminated Soils”, Ph.D. Thesis, University of Washington , 1993.
14. Azzam, O. M., M. A. Tarazi and Y. Tahboub, “Anodic Destruction of 4-Chlorophenol Solution”, Journal of Hazardous Materials, Vol. 75, No. 2, pp. 99-113, 1999.
15. Sudoh, M., T. Kodera, K. Sakai, J. Q. Zhang, and K. Koide, “Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent”, Journal of Chemical Engineering of Japan, Vol. 19, No. 6, pp. 513-518, 1986.
16. Brillas, E. and R. Sauleda, “Degradation of 4-Chlorophenol by Anode Oxidation, Electro-Fenton, Photoelectro-Fenton, and Peroxi-Coagulation Processes”, Journal of Electrochemical Society, Vol. 45, No. 3, pp. 759-765, 1998.
17. Yeager, E., “Electrocatalysts for O2 Reduction”, Electrochemica Acta, Vol. 29, No. 11, pp. 1527-1537, 1984.
18. Oloman, C. and A. P. Watkinson, “Hydrogen Peroxide Production in Trickle-Bed Electrochemical Reactors”, Journal of Electrochemical Society, Vol. 9, No. 1, pp. 117-128, 1979.
19. Acar, Y. B., J. T. Hamed, A. N. Alshawabkeh, and R. J. Gale, “Removal of Cadmium (II) from Saturated Kaolinite by the Application of Electrical-Current”, Geotechnique, Vol. 44, Iss. 2, pp. 239-254, 1994.
20. Baraud, F., S. Tellier, and M. Astruc, “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH”, Journal of Hazardous Materials, Vol. 64, No. 3, pp. 263-281, 1999.
21. Hamed, J. T. and A. Bhadra, “Influence of Current Density and pH on Electrokinetics”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 279-294, 1997.
22. 薩支高、徐文逢,“環境變因對鎘污染土壤電動法移除效率影響”,第十四屆廢棄物處理技術研討會論文集,第2-79 ~ 2-86頁,中壢,1999。
23. Chin, F. C. and C. Z. Tian, “In-Situ Remediation of Nitrate-Contaminated Ground Water by Electrokinetics/Iron Wall Processes”, Water Science and Technology, Vol. 38, No. 7, pp. 135-142, 1998.
24. Shin, I. W., “Major Ion and Electrical Potential Distribution in Soil under Electrokinetic Remediation”, Environmental Science &Technology,Vol. 35, No. 19, pp. 2151-2155, 2001.
25. 劉奇岳,「電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討」,國立中山大學環境工程研究所碩士論文,1999。
26. 洪肇嘉、吳惠銘、紀吉鴻、陳錕榮,“電動力復育鉻、鎘、鉛污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,第312~318頁,高雄,1998。
27. Yalcin, B., H. Li, and R. J. Gale, “Phenol Removal from Kaolinite by Electrokinetic ”, Journal of Geotechnical Engineering, Vol. 118, No. 1, pp. 1837-1852, 1992.
28. Takiyama, L. and C. P. Huang, “In-Situ Removal of Phenols from Contaminated Soil by Electro-osmosis Process”, Proceedings of 27th Mid-Atlantic Industrial & Hazardous Waste Conference, Lehigh University, Technomic Publishing Company, Lancaster, PA, pp. 835-846, 1995.
29. 翁誌煌、涂宏旭、林裕雄、謝永旭,“電動力技術復育三氯乙烯污染黏質土讓之研究”,第十五屆廢棄物處理技術研討會論文集, 第2-1 ~ 2-8頁,斗六,2000。
30. Rabbi, M. F. and B. Clark, “In Situ TCE Bioremediation Study Using Electrokinetic Cometabolite Injection”, Waste Management Vol. 20, pp. 279-286, 2000.
31. 楊金鐘、劉奇岳,“電動力-Fenton法處理受三氯乙烯污染土壤之研究”,第十四屆廢棄物處理技術研討會論文集,第2-1 ~ 2-8頁,中壢,1999。
32. 楊金鐘、劉奇岳,“電動力-Fenton法處理受4-氯酚污染土壤之最佳操作條件探討”,第十四屆廢棄物處理技術研討會論文集,第2-16 ~ 2-23頁,中壢, 1999。
33. 楊金鐘、陳政德,“電動力-Fenton法結合生物分解現地處理五氯酚污染土壤之研究”,第十五屆廢棄物處理技術研討會論文集, 第2-21 ~ 2-27頁,斗六,2000。
34. 楊金鐘、陳政德、洪志雄、洪源駿,“電動力-Fenton法處理4-氯酚污染土壤之成效與反應動力探討”, 第十五屆廢棄物處理技術研討會論文集,第2-28 ~ 2-33頁,斗六, 2000。
35. Yang, G. C. C. and C. Y. Liu, “Remediation of TCE Contaminated Soil by in Situ EK-Fenton Process”, Journal of Hazardous Materials, Vol. 85, No. 3, pp. 317- 331, 2001.
36. Acar, Y. B., H. Li, and R. J. Gale, “Phenol Removal from Kaolinite by Electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, No. 11, pp. 1837-1852, 1992.
37. Bruell, C. J., B. A. Segall, and M. T. Walsh, “Electroosmotic Removal of Gasoline Hydrocarbons and TCE from Clay”, Journal of Environmental Engineering, Vol. 118, No. 1, pp. 68-83, 1992.
38. Shapiro, A. P. and R. F. Probstein, “Removal of Contaminants from Saturated Clay by Electroosmosis”, Environmental Science & Technology, Vol. 27, No. 2, pp. 283-291, 1993.
39. 翁誌煌、陳仁慶、涂宏旭、林裕雄、袁菁,“電動力復育受單氯酚污染黏質土壤之研究”,第十四屆廢棄物處理技術研討會論文集,第2-47~2-54頁,中壢,1999。
40. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process”, Journal of Hazardous Materials , Vol. 69, No. 3, pp. 259-271, 1999.
41. 陳政德,「電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究」,國立中山大學環境工程研究所碩士論文,2000。
42. 蔡在唐、簡全基、邱瑞彬、黃嘉貞、鄭云淳、薩支高,“利用電動法復育受五氯酚污染之土壤”,第十五屆廢棄物處理技術研討會論文集,第2-167~2-172頁,斗六,2000。
43. 袁菁、陳威錦、江姿幸,“受苯系有機污染物土壤以電動力-界面活性劑系統處理之研究”,第十五屆廢棄物處理技術研討會論文集,第2-214~2-221頁,斗六,2000。
44. Rabbi, M. F. and B. Clark, “In Situ TCE Bioremediation Study Using Electrokinetic Cometabolite Injection”, Waste Management Vol. 20, pp. 279-286, 2000.
45. 翁誌煌、涂宏旭、袁菁,“串聯式電動力法復育受三氯乙烯污染黏質土壤之研究”,第七屆土壤污染整治研討會論文集,第217~232頁,台北,2001。
46. Yin, Y. and H. E. Allen, “In Situ Chemical Treatment, Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center”, Pittsburgh, PA., U.S.A., 1999.
47. Ravikumer, J. X. and M. D. Gurol, “Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Environmental Science & Technology, Vol. 28, No. 2, pp. 394-400, 1994.
48. 林財富、洪旭文, “受污染場現地化學處理方法的介紹”,工業污染防治,第72期,第178~200頁,1999。
49. Fenton, H. J. H., “Oxidation of Tartaric Acid in Presence of Iron”, Journal of Chemical Society, Vol. 65, No. 5, pp. 889-910, 1984.
50. Kochany, E. L., G. Sprah, and S. Harms, “Influence of Some Groundwater and Surface Water Constituents on Degradation of 4-Chlorophenol by the Fenton Reaction”, Chemosphere, Vol. 30, No. 1, pp. 9-20, 1994.
51. Chen, G. and G. E. Hoag, “The Mechanism and Applicability of in Situ Oxidation of Trichloroethylene with Fenton’s Reagent”, Journal of Hazardous Materials, Vol. 87, No. 2, pp. 171-179, 2001.
52. Mertz, J. H. and W. A. Waters, “The Mechanism of Oxidation of Alcohols with Fenton’s Reagent Discussion”, Faraday Society, Vol. 2, No. 1, pp.179-191, 1947.
53. Walling, C., “Fenton’s Reagent Revisited”, Accounts of Chemical Research, Vol. 8, pp. 125-131, 1975.
54. Watts, R. J., K. F. Michael, S. H. Kong, and L.T. Amy, “A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton’s Reaction”, Journal of Hazardous Materials, Vol. 76, No. 3, pp. 73-89, 2000.
55. Kwon, B. G., D. S. Lee, N. Kang, and J. Yoon, “Characteristics of p-Chlorophenol Oxidation by Fenton’s Reagent”, Water Research, Vol. 33, No. 5, pp. 2110-2118, 1999.
56. 程惠生、盧啟文、葉昭巖,“利用Fenton’s Reagent處理受Fluoranthene污染土壤之研究”,第十屆廢棄物處理技術研討會論文集,第140~148頁,台南,1995。
57. Lipczynska-Kochany, E., G. Sprah, and S. Harms, “Influence of Some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction”, Chemosphere, Vol. 30, No. 1, pp. 9-20, 1995.
58. 高思懷、林奮宏、張芳淑,“Fenton 反應中無機鹽之影響”,第二十屆廢水處理技術研討會論文集,第6-122~6-126頁,台北,1995。
59. Lu, M. C., J. N. Chen, and C. P. Chang, “Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide With Fenton’s Reagent”, Chemosphere, Vol. 35, No. 10, pp. 2285-2293, 1997.
60. Nadtochenko, V. and J. Kiwi, “Photo-indeuced Mineralization of Xylidine by the Fenton’s Reagent. 2. Implications of the Precursors Formed in the Dark”, Environmental Science & Technology, Vol. 32, No. 21, pp. 3282-3285, 1998.
61. Ravikumar, J. X. and M. D. Gurol, “Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Environmental Science & Technology, Vol. 28, No. 3, pp. 394-400, 1994.
62. Watts, R. J. and K. C. Kakarla, “Depth of Fenton-Like Oxidation in Remediation of Surface Soil”, Journal of Environmental Engineering, Vol. 123, No. 1, pp. 11-17, 1997.
63. 葉桂君、高羽安、李尚璋、林麗卿, “Fenton氧化法中土壤吸附氯酚特性變化之探討”,第十三屆廢棄物處理技術研討會論文集,第181~188頁,高雄,1998。
64. Barbeni, M., C. Minero, E. Pelizzetti, E. Borgrelo, and N. Serpone, “Chemical Degradation of Chlorophenols with Fenton’s Reagent”, Chemosphere, Vol. 16, No. 10, pp. 2225-2237, 1987.
65. Tang, W. Z. and C. P. Huang, “The Effect of Chlorine Position of Chlorinated Phenols on Their Dechlorination Kinetics by Fenton’s Reagent”, Waste Management, Vol. 15, No. 8, pp. 615-622, 1995.
66. Kolthoff, I. M. and A. I. Medalia, “The Reaction between Ferrous Iron and Peroxide. Ⅱ. Reaction with Hydrogen Peroxide, in the Presence of Oxygen”, Journal of American Chemical Society, Vol. 71, No. 9, pp. 3784-3788, 1949.
67. 賴文煌,「利用Fenton法處理受酚與4-氯酚污染土壤之探討」,國立中山大學環境工程研究所碩士論文,1997。
68. 楊金鐘、賴文煌、龍玉文,“利用Fenton法處理受4-氯酚污染土壤之探討”,第十二屆廢棄物處理技術研討會論文集,第329~334頁,台中,1997。
69. 楊英賢、盧明俊、廖志祥、蔡宜宏,“結合Fenton法與活性污泥法處理染整廢水”,第二十二屆廢水處理技術研討會論文集,第810~813頁,台中,1997。
70. Barbeni, M., C. Minero, E. Pelizzetti, E. Borgrelo, and N. Serpone, “Chemical Degradation of Chlorophenols with Fenton’s Reagent”, Chemosphere, Vol. 16, No. 10-12, pp. 2225-2237, 1987.
71. Yujun, Y. and E. A. Herbert, “In Situ Chemical Treatment”, Technology Evaluation Report, GWRACT, 1999.
72. Watts, R. J., S. Kong, M. Dippre, and W. T. Barnes, “Oxidation of Sorbed Hexachlorobenzen in Soils Using Catalyzed Hydrogen Peroxide”, Journal of Hazardous Materials, Vol. 39, No. 1, pp. 33-47, 1994.
73. Leung, S. W., R. J. Watts, and G. C. Miller, “Degradation of Perchlorethylene by Fenton Reagent: Speciation and Pathway”, Journal of Environmental Quality, Vol. 21, No. 6, pp. 377-381, 1994.
74. Lücking, F., H. Köser, M. Jank, and A. Ritter, “Iron Powder, Graphite and Activated Carbon as Catalyst for Oxidation of 4-Chlorophenol with Aqueous Solution”, Water Research, Vol. 32, No. 9, pp. 2607-2614, 1998.
75. Watts, R. J., M. D. Udell, and R. M. Monsen, “Use of Iron Minerals in Optimizing the Peroxide Treatment of Contaminated Soils”, Water Environment Research, Vol. 65, No. 7, pp. 839-844, 1993.
76. Yeh, C. K. and J. T. Novak, “The Effect of Hydrogen Peroxide on the Degradation of Methyl and Ethyl Ter-butyl Ether in Soils”, Water Environment Research, Vol. 67, No. 5, pp. 828-834, 1995.
77. Tang, W. Z. and S. Tassos, “Oxidation Kinetics and Mechanisms of Trihalomethanes by Fenton’s Reagent”, Water Research, Vol. 31, No. 5, pp. 1117-1125, 1997.
78. Watts, R. J., A. P. Jones, P. H. Chen, and A. Kenny, “Mineral- Catalyzed Fenton -Like Oxidation of Sorbed Chlorophenol”, Water Environment Research, Vol. 69, No. 3, pp. 269-275, 1997.
79. Chen, C. T., A. N. Tafuri, M. Rahman, and M. B. Foerst, “Chemical Oxidation Treatment of Petroleum Contaminated Soil Using Fenton’s Reagent”, Journal of Environmental Science and Health, Vol. A33, No. 6, pp. 987-1008, 1998.
80. Lee, B. D., M. Hosomi, and A. Murakami, “Fenton Oxidation with Ethanol to Degrade Anthracene into Biodegradable 9,10-Anthraquinon: A Pretreatment Method for Anthracene Contaminated Soil”, Water Science and Technology, Vol. 38, No. 7, pp. 91-97, 1998.
81. 葉桂君、鄭仲彬,“Fenton法現地復育受氯酚污染土壤影響因子之探討”,第十一屆廢棄物處理技術研討會論文集,第555~562頁,台北,1996。
82. Wang, X. and M. L. Brusseau, “Effect of Pyrophosphate on the Dechlorinaton of Tetrachloroethene by the Fenton Reaction”, Environmental Toxicology and Chemistry, Vol. 17, No. 9, pp. 1689-1694, 1998.
83. 盧明俊、陳重男、黃旭暉,“探討土壤中針鐵礦催化過氧化氫分解2-氯酚之研究”,第十三屆廢棄物處理技術研討會論文集,第267~273頁,高雄,1998。
84. 黃旭暉、盧明俊、陳重男,“Hydrogen Peroxide Decomposition and 2-Chlorophenol Degradation in the Presence of Iron Oxide”,第十四屆廢棄物處理技術研討會論文集,第2-39~2-54頁,中壢,1999。
85. Dercova, K. and B, Vrana, “Fenton’s Type Reaction and Chemical Pretreatment of PCBs”, Chemosphere, Vol. 39, No. 15, pp. 2621-2628, 1999.
86. Arienzo, M., “Use of Abiotic Oxidative-Reductive Technologies for Remediation of Munitions Contaminated Soil in a Bioslurry Reactor”, Chemosphere, Vol. 40, No. 3, pp. 441-448, 2000.
87. 葉桂君、吳鴻明、張欣傑,“似Fenton法現地氧化地下水層TCE DNAPL之探討”,第七屆土壤污染整治研討會論文集,第 233-246頁,台北, 2001。
88. Chen, G. and G. E. Hoag, “The Mechanism and Applicability of in Situ Oxidation of Trichloroethylene with Fenton’s Reagent”, Journal of Hazardous Materials, Vol. 87, No. 2, pp. 171-179, 2001.
89. NATO/CCMS Pilot Study, “Treatment Walls and Permeable Reactive Barriers”, Number 229, EPA 542-R-98-003,1998.
90. Day, S. R., “Geotechnical Techniques for the Construction of Reactive Barriers”, Journal of Hazardous Materials, Vol. 67, No. 3, pp. 285-297, 1999.
91. Matheson, L. J. and P. G. Tratnydk, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science &Technology, Vol. 28, No. 12, pp. 2045-2053, 1994.
92. Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of Halogenated Aliphatic Compounds”, Environmental Science &Technology, Vol. 21, No. 8, pp. 722-736, 1987.
93. Su, C. and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products”, Environmental Science &Technology, Vol. 33, No. 1, pp. 163-168 , 1999.
94. Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Tricholroethylene and Tetracholroethylene in a Batch Reactive Metallic Iron-Water System”, Environmental Science &Technology, Vol. 29, No. 11, pp. 2850-2855, 1995.
95. U.S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents”, US Army Corps of Engineers, DG 1110-345-11, 1997.
96. Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis”, Water Research, Vol. 30, No. 10, pp. 2315-2322 ,1996.
97. Helland, B. R., P. J. J. Alvarez, and J. L. Schnoor, “Reductive Dechlorination of Carbon Tetrachloride with Elemental Iron”, Journal of Hazardous Materials, Vol. 41, No. 2, pp. 205-216, 1995.
98. Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron”, Environmental Progress, Vol. 16, No. 2, pp. 137-143, 1997.
99. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689-2695, 1997.
100. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron”, Water Research, Vol. 32, No. 8, pp. 2257-2264 , 1998.
101. Zawaideh, L. L. and T. C. Zhang, “The Effects of pH and Addition of an Organic Buffer (HEPES) on Nitrate Transformation in Fe-Water Systems”, Water Science and Technology, Vol. 38, No. 7, pp. 107-115, 1998.
102. Siebert, J. et al.,“Evaluation of Fe0-Reactive Media Treatment Systems”, Contaminated Soil 2000, Thomas Telford Ltd., London, pp. 583-586, 2000.
103. Klein, R., and H. Schad, “Results from a Full Scale Funnel-and-Gate System at the BEKA Site in Tübingen (Germany) Using Zero-Valent Iron”, Contaminated Soil 2000, Thomas Telford Ltd., London, pp. 917-923, 2000.
104. 楊金鐘、薛威震,“利用電動力法結合陽離子交換樹脂反應牆現地整治受鉛銅污染土壤之研究”,第十四屆廢棄物處理技術研討會論文集,第2-24 ~ 2-31頁,中壢,1999。
105. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process”, Journal of Hazardous Materials , Vol. 69, No. 3, pp. 259-271, 1999.
106. Blowes, D. W., C. J. Ptacek, S. G. Benner, G. Shawn, C. W. T. McRae, T. A. Bennett, A. Timothy, and R. W. Puls, “Treatment of Inorganic Contaminants Using Permeable Reactive Barriers”, Journal of Contaminant Hydrology, Vol. 45, No. 1-2, pp. 123-137, 2000.
107. Kjeldsen, P., and I. A. Fuglsang, “Demonstration Program on Reactive Barrier Technologies Using Zero-Valent Iron”, Contaminated Soil 2000, Thomas Telford Ltd., London, pp. 943-950, 2000.
108. 程淑芬,「斗閘式現地地下水污染復育技術之探討-含氯有機化合物以零價金屬反應透水牆還原脫氯之研究」,國立台灣大學環境工程研究所博士論文,2000。
109. 曾迪華、蔡正勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,國立中央大學環境工程研究所碩士論文,2000。
110. 許益源,“地下水反應牆復育技術”,土壤及地下水調查與復育技術研討會論文集,第142~164頁,台北,2002。
111. U.S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation”, Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125, 1998.
112. U.S. EPA, “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers”, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/542/R/99/002, 1999.
113. U.S. EPA, “Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium (Ⅵ) Plumes in Ground Water”, National Risk Management Research Laboratory, EPA-600-F-97-008, 1997.
114. 李正怡,「利用生物濾床共代謝三氯乙烯效率提昇之研究」,國立成功大學環境工程研究所碩士論文,1999。
115. 吳敏煌、顏秀美,“土壤污染管制標準及監測基準之研訂”,第七屆土壤污染整治研討會論文集,第51~73頁,台北,2001。
116. Ferguson, J. F. and J. M. H. Pietari, “Anaerobic Transformations and Bioremediation of Chlorinated Solvents”, Environmental Pollution, Vol. 107, No. 2, pp. 209-215, 2000.
117. 行政院環保署,http://www.epa.gov.tw/, 2002。
118. 許伯彰,「二氧化鈦光觸媒分解含氯揮發性有機污染物之產物分析及反應路徑探討」,國立中山大學環境工程研究所碩士論文,1998。
119. 行政院環保署網站全文檢索,http://www.epa.gov.tw/J/toxic/msds.data/toxmsds.htm, 2002。
120. Chen, C., J. A. Puhakka, and J. F. Ferguson, “Transformations of 1,1,2,2-Tetrachloroethane Under Methanogenic Conditions”, Environmental Science & Technology, Vol. 30, No. 6, pp. 542-547, 1996.
121. Ferguson, J. F., and J. M. H. Pietari, “Anaerobic Transformations and Bioremediation of Chlorinated Solvents”, Environmental Pollution, Vol. 107, No. 2, pp. 209-215, 2000.
122. Ballapragada, B. S., “Reductive Dechlorination of Chlorinated Ethenes by Mixed Anaerobic Consortia”, Ph.D. Thesis, University of Washington, Seattle, WA, 1996.
123. 簡魁志,「主要有害有機物與指標物高溫氧化分解產物與動力學研究」,逢甲大學土木及水利工程研究所碩士論文,1997。
124. Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup”, Proceedings of International Conference on Groundwater Quality Protection, pp. 165-179, Taipei, 1997.
125. Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals”, Environmental Science & Technology, Vol. 30, No. 8, pp.2654-2659, 1996.
126. Campbell, T. J., D. R. Burris, A. L. Roberts, and J. R. Wells, “Tricholroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System”, Environmental Toxicology and Chemistry, Vol. 16, No. 4, pp. 625-630, 1997.
127. ASTM, “Standard Test Method for Specific Gravity of Soils”, ASTM D854-83, 1983.
128. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.60T ,1995 。
129. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T ,1995。
130. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539-579, Elsevier Scientific, 1980.
131. Head, K. H., Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests, Pentech Press Limited, Plymouth, Devon, p. 249, 1980.
132. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202. 60A,1995。
133. Olson, R. V., Iron. InC. A. Black et al.(ed.).Methods of Soil Analysis, Part 2 Agronomy 9:966-967. Am. Soc. of Agron., Madison, Wis., 1965.
134. 鍾朝嵩 譯,「工廠實驗計劃法」,先鋒企業管理發展中心,桃園縣,1990。
135. 蘇朝墩 編,「產品穩健設計-田口品質工程方法的介紹和應用」,中華民國品質學會,台北市,1999。
136. 陳耀茂 譯,「田口實驗計劃法」,滄海書局,台中市,1997。
137. 張季娜、羅仕勇、宋振昌、蔡彰文、陳世璉、莊泰旭、邱鎮宏、高述崙 譯,「田口式品質工程概論」,中華民國品質學會,台北市,1992。
138 Metcalf and Eddy, Inc., “Wastewater Engineering: Treatment, Disposal, and Reuse”, 3rd Ed., McGraw-Hill, Inc., New York, p. 1045, 1991.
139. 張仁福,「土壤污染防治學」,高雄復文圖書出版社,高雄市,1998。
140. Watts, R. J., and S. E. Dilli, “Evaluaton of Iron Catalysts for the Fenton-Like Remediation of Diesel-Contaminated Soils”, Journal of Hazardous Materials, Vol. 63, No. 2, pp. 209-224, 1996.
141. Lin, S. S. and M. D. Gurol, “Catalytic Decomposition of Hydrogen peroxide on Iron Oxide: Kinetics, Mechanism, and Implications”, Environmental Science &Technology, Vol. 32, No. 11, pp. 1217-1223, 1998.
142. 林裕雄,「以電動力法處理受三率乙烯及單氯酚污染粘質土壤之研究」,國立中興大學環境工程研究所碩士論文,2000年。
143. You, C. N. and J. C. Liu, “Desorptive Behavior of Chlorophenols in Contaminated Soils”, Water Science and Technology, Vol. 33, No. 6, pp.263-270, 1996.
144. Yeo, S. D., E. Tuncer, and A. Akgerman, “Adsorption of Volatile Organic Compounds on Soil and Prediction of Desorption Breakthroughs”, Separation Science and Technology, Vol. 32, No. 23, pp. 2497-2512, 1997.
145. 台灣電力公司,“電費計收”,http://www.taipower.com.tw/b.htm,2002。
146. U.S. EPA, “Superfund Information System-RODs”, http://www.epa.gov/superfund/sites/rodsites/0301849.htm, 1990.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code