Responsive image
博碩士論文 etd-0827107-160541 詳細資訊
Title page for etd-0827107-160541
論文名稱
Title
乳化奈米級零價鐵處理水溶液中之三氯乙烯
Treatment of Trichloroethylene in Aqueous Solution Using Nanoscale Zero-Valent Iron Emulsion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
161
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-17
繳交日期
Date of Submission
2007-08-27
關鍵字
Keywords
土壤污染、界面活性劑、電動力法、乳化奈米鐵、三氯乙烯
emulsified nanoscale zero-valent iron, trichloroethylene, electrokinetic, contaminated soil, surfactant
統計
Statistics
本論文已被瀏覽 5722 次,被下載 3005
The thesis/dissertation has been browsed 5722 times, has been downloaded 3005 times.
中文摘要
本研究以三氯乙烯(TCE)作為水溶液及土壤污染整治試驗之標的污染物,並探討採用乳化奈米鐵漿液與電動力法組合技術之整治成效。首先於實驗室利用化學還原法以工業級藥品製備奈米級零價鐵,經X-光繞射分析證實為鐵元素與鐵氧化物,而掃描式電子顯微鏡觀測得奈米鐵粒徑分佈介於30~50 nm間。
大豆油乳液之穩定性探討係使用六種非離子型界面活性劑搭配大豆沙拉油作探討,結果顯示使用混合界面活性劑(Span 80與Tween 40)搭配大豆油之乳化漿液有較佳的乳液穩定性。確定最佳大豆油乳液製備方法後,即結合奈米級零價鐵水溶液、食品級大豆油(Soybean oil)及混合界面活性劑,經充分攪拌,製備得乳化奈米級零價鐵漿液。
對於乳化奈米鐵漿液去除水溶液中三氯乙烯降解之影響,首先,探討乳化奈米級零價鐵漿液之鐵與油相劑量之影響,發現經乳化改質後之奈米鐵確實可提高降解TCE之成效,且奈米鐵劑量在0.75 iron-g/L即可降解TCE(初始濃度10 mg/L)達55 %,而增加油相可改善乳液穩定性,但此對降解TCE之成效卻有負面影響。不同操作變因(pH值、TCE初始濃度、震盪強度)對於TCE降解有不同程度的影響,實驗結果顯示在pH = 6時,可降解TCE濃度達94 %;而較高的TCE初始濃度則有較高的TCE去除率;在未震盪(0 rpm)與外加水平震盪(160 rpm)下,顯示外加動力震盪有較佳降解成效。此外,使用人工配製TCE污染地下水樣,進行乳化奈米級零價鐵處理TCE污染地下水樣,結果顯示地下水中之硝酸鹽與碳酸鹽會抑制零價鐵對TCE的反應性,尤其大量碳酸鹽於反應系統,可能會在鐵表面生成鈍化膜或沉澱。
本研究更進一步利用乳化奈米鐵漿液-電動力法組合技術處理水平土壤管柱系統中的三氯乙烯(98~118 mg/kg)。採用電位梯度為1 V/cm,每天注入定量乳化奈米鐵漿液20 mL(鐵濃度為0.75 g/L)於選定之電極槽內;實驗結果顯示,將乳化奈米鐵漿液注入陽極槽,在強酸且氧化態的環境中,造成鐵迅速腐蝕而耗盡,影響整體降解效果;而乳化奈米鐵漿液注入陰極槽之實驗組,其土壤中三氯乙烯殘存率為33.55 %,且乳化奈米鐵漿液於陰極槽有助於將移出土體的三氯乙烯進行破壞降解,顯示在陰極槽加入乳化奈米鐵漿液有最大的土體中三氯乙烯去除率。
Abstract
The objective of this research was to evaluate the treatment efficiency of a trichloroethylene(TCE)-contaminated aqueous solution and soil by combined technologies of the emulsified nanoscale zero-valent iron slurry (ENZVIS) and electrokinetic remediation process. Nanoiron was synthesized using the chemical reduction method by industrial grade chemicals. The synthesized nanoparticles contained elemental iron and iron oxide as determined by X-ray diffractmetry(XRD). Micrographs of FE-SEM have shown that a majority of nanoiron were in the size range of 30~50 nm.
The stability study of food-grade soybean oil emulsion was conducted using six non-ionic surfactants and soybean oil. The results have shown that the emulsion prepared by mixed surfactants (Span 80 and Tween 40) and soybean oil yielded a better emulsion stability. Based on the above finding, the nanoiron slurry, soybean oil and aforementioned, mixed surfactants were used to prepare ENZVIS.
Degradation of TCE by ENZVIS under various operating parameters was carried out in batch experiments. The experimental results have indicated that emulsified nanoiron outperformed nanoiron in TCE dechlorination rate. ENZVIS (0.75 g-Fe0/L) degradated TCE (initial conc.= 10 mg/L) down to 45 %. An increase of the oil dosage could improve the stability of the emulsion, but yielding a negative influence on degradation of TCE. Experimental results also showed that ENZVIS could remove TCE up to 94 % when pH=6. It was also formed that a higher TCE initial concentration would result in a higher TCE removal efficiency. In addition, using ENZVIS to degraded TCE-contaminated artificial groundwater has indicated that nitrate and carbonate of groundwater will suppress nanoiron reaction with TCE. Especially, a high concentration of carbonate in the reaction system might form a passive film or precipitates on nanoiron surface.
This study further evaluated the treatment efficiency of combining ENZVIS and electrokinetic technology in treating a TCE-contaminated soil. Experimental conditions were given as follows:(1) initial TCE concentration in the range of 98~118 mg/kg; (2) an electric potential gradient of 1 V/cm; (3) a daily addition of 20 mL ENZVIS; and (4) a reaction time of 10 days. Experimental results have shown that an addition of ENZVIS to the anode reservoir of strongly acidic and oxidative environment would cause nanoiron to corrode rapidly and decrease TCE removal efficiency. On the other hand, an addition of ENZVIS to the cathode reservoir would enhance the degradation of TCE therein. In summary, an addition of ENZVIS to the cathod reservoir would yield the best TCE removal efficiency.
目次 Table of Contents
頁碼
聲明切結書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
表目錄 ix
圖目錄 x
照片目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 6
2.1 三氯乙烯之性質與對人體的危害性 6
2.1.1 三氯乙烯之物化性質 6
2.1.2 三氯乙烯對人體的危害性 9
2.2 土壤與地下水受含氯有機物污染之相關整治技術 12
2.2.1 物理/化學處理整理技術 13
2.2.2 生物處理整治技術 14
2.3 零價鐵 18
2.3.1 零價鐵之應用原理 18
2.3.2 影響零價鐵還原脫氯之相關因子 21
2.3.3 三氯乙烯還原脫氯之反應途徑 26
2.4 奈米級零價鐵之發展 29
2.4.1 奈米科技 29
2.4.2 奈米級零價鐵之製備與整治污染物相關研究 29
2.4.3 奈米雙金屬之發展 33
2.4.4 奈米雙金屬整治污染物之相關研究 34
2.4.5 奈米級零價鐵表面改質 36
2.5 界面活性劑 39
2.5.1 界面活性劑簡介 39
2.5.2 非離子型界面活性劑 41
2.5.3 HLB值 42
2.5.4 乳化 43
2.6 電動力法 45
2.6.1 電動力法之傳輸與相關反應機制 45
2.6.2 影響電動力法之相關因子 48
2.6.3 電動力法整治污染物相關研究 49
第三章 實驗材料與方法 51
3.1 實驗材料 51
3.1.1 奈米級零價鐵製備 51
3.1.2 乳化奈米級零價鐵漿液之製備 52
3.1.3 土壤樣品來源與前處理 52
3.1.4 其它試藥及材料 52
3.2 實驗設備 55
3.2.1 儀器設備 55
3.2.2 電動力技術管柱處理系統 57
3.3 奈米級零價鐵基本性質分析 59
3.3.1 X-光繞射(X-Ray Diffraction, XRD)分析 59
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析 59
3.3.3 掃描式電子顯微鏡-X-光能譜分析儀(SEM-EDS)與能量分佈面 掃描(EDS-Mapping)分析 60
3.3.4 動態光散射(Dynamic Light Scattering, DLS)分析 60
3.4 大豆油乳液穩定性探討 62
3.4.1 選擇適當HLB值 62
3.4.2 選擇適當混合界面活性劑 63
3.4.3 不同添加順序 63
3.5 乳化奈米級零價鐵漿液去除三氯乙烯水溶液試樣之批次實驗 63
3.5.1 乳化奈米級零價鐵漿液之微胞觀測 64
3.5.2 三氯乙烯水溶液批次試驗相關分析與試樣製備 64
3.5.3 油/水對TCE分配係數批次實驗 66
3.5.4 儀器分析與操作條件 66
3.6 乳化奈米級零價鐵去除三氯乙烯污染地下水樣 68
3.7 乳化奈米級零價鐵-電動力法去除土壤中三氯乙烯試驗 69
3.7.1 土壤樣品基本性質分析 69
3.7.1.1 粒徑分佈 69
3.7.1.2 比重 70
3.7.1.3 pH值 71
3.7.1.4 含水份 71
3.7.1.5 有機物質含量 72
3.7.1.6 灼燒減量 72
3.7.1.7 陽離子交換容量 72
3.7.2 人工污染土樣製備與管柱裝填 73
3.7.3 土樣反應前後分析項目 74
3.7.4 反應過程分析 75
3.7.5 乳化奈米鐵漿液最佳注入位置探討 76
第四章 結果與討論 77
4.1 奈米級零價鐵基本性質分析 77
4.1.1 X-光繞射(X-Ray Diffraction, XRD)分析 77
4.1.2 場發射型掃描式電子顯微鏡(FE-SEM)分析 79
4.1.3 掃描式電子顯微鏡-X-光能譜分析儀(SEM-EDS)與能量分佈面 掃描(EDS-Mapping)分析 80
4.1.4 動態光散射(Dynamic Light Scattering, DLS)分析 83
4.2 大豆油乳液穩定性探討 84
4.2.1 選擇適當HLB值 84
4.2.2 選擇適當混合界面活性劑 86
4.2.3 不同添加順序 86
4.3 乳化奈米級零價鐵漿液去除三氯乙烯水溶液試樣之批次實驗 88
4.3.1 乳化奈米級零價鐵漿液之製備與微胞觀測 88
4.3.2 前導實驗-乳化奈米級零價鐵漿液之鐵與油相劑量 90
4.3.3 油/水對TCE之分配係數批次實驗 95
4.3.4 不同操作變因對降解三氯乙烯之影響 96
4.4 乳化奈米級零價鐵去除三氯乙烯污染地下水樣 106
4.5 乳化奈米級零價鐵─電動力法去除土壤中三氯乙烯試驗 108
4.5.1 土壤樣品基本性質分析 108
4.5.2 標的污染物 110
4.5.3 乳化奈米鐵漿液最佳注入位置探討 111
第五章 結論與建議 120
5.1 結論 120
5.2 建議 123
參考文獻 124
附錄 139
附表1 不同溫度下的水之相對密度及校正因子K值 139
附表2 台灣糖業-大豆沙拉油脂肪酸組成表 140
附表3 圖4-6 不同奈米鐵劑量之乳化鐵漿液去除水溶液中TCE之情形 實驗數據 141
附表4 圖4-7 不同反應系統對TCE之降解成效比較實驗數據 141
附表5 圖4-8 不同油相劑量之乳化鐵對TCE降解成效之影響實驗數據 142
附表6 圖4-13 乳化鐵在不同初始pH值下對於三氯乙烯之降解成效 比較實驗數據 142
附表7 圖4-17 不同三氯乙烯初始濃度對其降解成效之影響實驗數據 143
附表8 圖4-18有無震盪對降解三氯乙烯之影響實驗數據 143
附表9 圖4-19 乳化奈米鐵降解TCE污染去離子水樣與模擬地下水樣 比較實驗數據 144
附表10 圖4-23 土壤管柱槽液pH值隨處理時間變化圖實驗數據 144
附表11 圖4-24 陰極槽累積電滲透流流量隨處理時間變化圖實驗數據 145
附表12 圖4-25 操作電流隨處理時間變化圖實驗數據 145
附表13 圖4-26 陰極槽內三氯乙烯含量隨處理時間變化圖實驗數據 146
附表14 圖4-27 陽極槽內三氯乙烯含量隨處理時間變化圖實驗數據 146
附表15 圖4-28 反應後土壤管柱內殘餘之三氯乙烯含量分佈圖 實驗數據 147
附表16 圖4-29 反應後土壤管柱內土壤pH值分佈圖實驗數據 147
碩士在學期間發表之學術論文 148


參考文獻 References
1. 張尊國,“台灣地區土壤污染現況與整治政策分析”,財團法人國家政策研究基金會-智庫,永續(析)091-021號 (2002)。
2. 行政院環境保護署,土壤與地下水,http://www.epa.gov.tw/b/b0100.asp?Ct_Code=02X0000002X0000107 (2007)。
3. Morrison, R. D., “Application of Forensic Techniques for Age Dating and Source Identification in Environmental Litigation,” Journal of Environmental Forensics, Vol. 1, pp. 131-153 (2000).
4. 葉琮裕,“土壤地下水污染整治技術”,環保訓練雙月刊,第49期 (2000)。
5. Puls, R. W., C. J. Paul, and R. M. Powell, “The Application of In Situ Permeable Reactive (Zero-Valent Iron) Barrier Technology for the Remediation of Chromate-Contaminated Groundwater: A Field Test,” Applied Geochemistry, Vol. 14, pp. 989-1000 (1999).
6. Ebert, M., R. Köber, A. Parbs, V. Plagentz, D. Schäfer, and A. Dahmke, “Assessing Degradation Rates of Chlorinated Ethylenes in Column Experiments with Commercial Iron Materials Used in Permeable Reactive Barriers,” Environmental Science & Technology, Vol. 40, No. 6, pp. 2004-2010 (2006).
7. Matheson, L. J. and P. G. Tratnyek, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
8. Masciangioli, T. and W. X. Zhang, “Environmental Technologies at the Nanoscale,” Environmental Science & Technology, Vol. 37, pp. 102A-108A (2003).
9. Zhang, W. X., “Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, Vol. 5, pp. 323-332 (2003).
10. Wang, C. B. and W. X. Zhang, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science & Technology, Vol. 31, No. 7, pp. 2154-2156 (1997).
11. Lowry, G. V. and K. M. Johnson, “Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water or Methanol Solution,” Environmental Science & Technology, Vol. 38, No. 19, pp. 5208-5216 (2004).
12. Quinn, J., C. Geiger, C. Clausen, K. Brooks, C. Coon, S. O'Hara, T. Krug, D. Major, W. S. Yoon, A. Gavaskar, and T. Holdsworth, “Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron,” Environmental Science & Technology, Vol. 39, No. 5, pp. 1309-1318 (2005).
13. 楊金鐘、張永宜,“乳化奈米級零價鐵去除水溶液中三氯乙烯成效初步探討”,第四屆土壤與地下水研討會論文集光碟,台中市(2006)。
14. 勞工安全衛生研究所,物質安全資料表,http://www.iosh.gov.tw/data/f11/msds118.htm (2007)。
15. 染化資訊網站,http://www.dfmg.com.tw/ (2007)。
16. 王俊元,“無機離子對零價鐵還原脫氯祛除水中三氯乙烯之影響”,碩士學位論文,國立中央大學環境工程研究所,中壢市 (2003)。
17. 李伯村,“含水層異質性對NAPL垂直傳輸影響之研究”,碩士學位論文,國立成功大學地球科學研究所,台南市 (2005)。
18. 陳家洵,“工程小叢書-環境工程系列:地下水及土壤污染”,財團法人中興工程科技研究發展基金會,台北市 (2004)。
19. Kueper, B. H., G. P. Wealthall, J. W. N. Smith, S.A. Leharne, and D. N. Lerner, “An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface,” Environment Agency R&D Publication 133, UK (2003).
20. Perry, R. H. and D. W. Green, “Perry’s Chemical Engineers Handbook,” McGraw-Hill, New York (1997).
21. 鄒志方、李伯靈、符古雅、楊翠嬋、林炳杰,“低濃度三氯乙烯對接觸者免疫功能的影響”,環境與職業醫學,第23卷,第1期,第45-47頁 (2006)。
22. RCA工殤戰鬥網,http://www.coolloud.org.tw/rca/。
23. 習良孝、何忠陽、羅薪又、宋光中,「土壤與地下水污染整治標準及處理技術之現況評估」,中興工程顧問社,台北市 (2000)。
24. 葉景棟,“地下水及土壤處理技術與回收設備”,環保訓練雙月刊,第51期 (2000)。
25. 林財富、吳龍泉、洪志雄、洪旭文、高志明、陳古汎、陳庭育、許榮欣、葉桂君、楊金鐘、廖毓鈴、鄭秀卿、謝汶興、顏宏愷,「工廠土壤及地下水污染整治技術手冊-石化業」,經濟部工業局,台北市 (2003)。
26. Borden, R. C. and B. X. Rodriguez, “Evaluation of Slow Release Substrates for Anaerobic Bioremediation,” Bioremediation Journal, Vol. 10, pp. 59-69 (2006).
27. Yang, Y. and P. L. McCarty, “Comparison between Donor Substrates for Biologically Enhanced Tetrachloroethene DNAPL Dissolution,” Environmental Science & Technology, Vol. 36, No. 15, pp. 3400-3404 (2002).
28. Hunter, W. J., “Bioremediation of Chlorate or Perchlorate Contaminated Water Using Permeable Barriers Containing Vegetable Oil,” Current Microbiology, Vol. 45, pp. 287-292 (2002).
29. Hunter, W. J., “Injection of Innocuous Oils to Create Reactive Barriers for Bioremediation: Laboratory Studies,” Journal of Contaminant Hydrology, Vol. 80, pp. 31-48 (2005).
30. 葉琮裕,“含氯有機溶劑污染場址現地整治技術-食用油基質添加生物復育”,環保訓練雙月刊,第67期 (2003)。
31. Hunter, W. J., “Use of Vegetable Oil in a Pilot-Scale Denitrifying Barrier,” Journal of Contaminant Hydrology, Vol. 53, pp. 119-131 (2001).
32. Pfeiffer, P., A. R. Bielefeldt, T. Illangasekare, and B. Henry, “Partitioning of Dissolved Chlorinated Ethenes into Vegetable Oil,” Water Research, Vol. 39, pp. 4521-4527 (2005).
33. Pfeiffer, P., A. R. Bielefeldt, T. Illangasekare, and B. Henry, “Physical Properties of Vegetable Oil and Chlorinated Ethene Mixtures,” Journal of Environmental Engineering, Vol. 131, No. 10, pp. 1447-1452 (2005).
34. Charbeneau, R. J., P. B. Bedient, and R. C. Loehr, 盧至人譯,「Groundwater Remediation,地下水的污染整治」,國立編譯館,台北市 (1998)。
35. Geiger, C. L., C. Clausen, R. W. DeVor, K. M. Milum, C. A. Clausen, and J. W. Quinn, “Remediation of DNAPL and Heavy Metal Contamination Using Emulsified Zero-Valent Metal Particles,” EnviroNano 2006 環境奈米技術之進展:第三屆環境保護與奈米科技學術研討會論文集(楊金鐘 主編),第15-30頁,高雄市 (2006)。
36. Lien, H. L. and H. T. Su, “Promoter Effect of Aluminum Oxide on Enhanced Hydrodechlorination of Carbon Tetrachloride with Zero-Valent Aluminum,” Journal of the Chinese Institute of Environmental Engineering, Vol. 14, No. 4, pp. 261-267 (2004).
37. Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System,” Environmental Science & Technology, Vol. 29, No. 11, pp. 2850-2855 (1995).
38. Cheng, S. F. and S. C. Wu, “Feasibility of Using Metals to Remediate Water Containing TCE,” Chemosphere, Vol. 43, pp. 1023-1028 (2001).
39. Su, C. and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science & Technology, Vol. 33, No. 1, pp. 163-168 (1999).
40. Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformations of Halogenated Aliphatic Compounds,” Environmental Science & Technology, Vol. 21, No. 8, pp. 722-736 (1987).
41. Doong, R. A. and S. C. Wu, “Reductive Dechlorination of Chlorinated Hydrocarbons in Aqueous Solutions Containing Ferrous and Sulfide Ions,” Chemosphere, Vol. 24, No. 8, pp. 1063-1075 (1992).
42. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron,” Chemosphere, Vol. 35, No. 11, pp. 2689-2695 (1997).
43. Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal,” Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160 (1996).
44. Nam, S. and P. G. Tratnyek, “Reduction of Azo Dyes with Zero-Valent Iron,” Water Research, Vol. 34, pp. 1837-1845 (2000).
45. Zhang, W. X., C. B. Wang, and H. L. Lien, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles,” Catalysis Today, Vol. 40, pp. 387-395 (1998).
46. Lin, C. J. and S. L. Lo, “Effects of Iron Surface Pretreatment on Sorption and Reduction Kinetics of Trichloroethylene in a Closed Batch System,” Water Research, Vol. 39, pp. 1037-1046 (2005).
47. Chen, J. L., S. R. Al-Abed, J. A. Ryan, and Z. Li, “Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron,” Journal of Hazardous Materials, Vol. B83, pp. 243-254 (2001).
48. Támara, M. and E. C. Butler, “Effects of Iron Purity and Groundwater Characteristics on Rates and Products in the Degradation of Carbon Tetrachloride by Iron Metal,” Environmental Science & Technology, Vol. 38, No. 6, pp. 1866-1876 (2004).
49. Song, H. and E. R. Carraway, “Reduction of Chlorinated Ethanes by Nanosized Zero-Valent Iron Kinetics, Pathways, and Effects of Reaction Conditions,” Environmental Science & Technology, Vol. 39, No. 16, pp. 6237-6254 (2005).
50. Arnold, W. A. and A. L. Robert, “Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,” Environmental Science & Technology, Vol. 34, No. 9, pp. 1794-1805 (2000).
51. Farrell, J., M. Kason, N. Melitas, and T. Li, “Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene,” Environmental Science & Technology, Vol. 34, No. 3, pp. 514-521 (2000).
52. Devlin, J. F. and K. O. Allin, “Major Anion Effects on the Kinetics and Reactivity of Granular Iron in Glass-Encased Magnet Batch Reactor Experiments,” Environmental Science & Technology, Vol. 39, No. 6, pp. 1868-1874 (2005).
53. Klausen, J., J. Ranke, and R. P. Schwarzenbach, “Influence of Solution Composition and Column Aging on the Reduction of Nitroaromatic Compounds by Zero-Valent Iron,” Chemosphere, Vol. 44, pp. 511-517 (2001).
54. Su, C. and R. W. Puls, “Arsenate and Arsenite Removal by Zerovalent Iron: Effects of Phosphate, Silicate, Carbonate, Borate, Sulfate, Chromate, Molybdate, and Nitrate, Relative to Chloride,” Environmental Science & Technology, Vol. 35, No. 22, pp. 4562-4568 (2001).
55. Lipczynska-Kochany, E., S. Harms, R. Milburn, G. Sprah, and N. Nadarajah, “Degradation of Carbon Tetrachloride in the Presence of Iron and Sulphur Containing Compounds,” Chemosphere, Vol. 29, No. 7, pp. 1477-1489 (1994).
56. Köber, R., O. Schlicker, M. Ebert, and A. Dahmke, “Degradation of Chlorinated Ethylenes by Fe0: Inhibition Processes and Mineral Precipitation,” Environmental Geology, Vol. 41, pp. 644-652 (2002).
57. Ponder S. M., J. G. Darab, and T. E. Mallouk, “Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-Valent Iron,” Environmental Science & Technology, Vol. 34, No. 12, pp. 2564-2569 (2000).
58. Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals,” Environmental Science & Technology, Vol. 30, No. 8, pp. 2654-2659 (1996).
59. Arnold, W. A., W. P. Ball, and A. L. Roberts, “Polychlorinated Ethane Reaction with Zero-Valent Zinc: Pathways and Rate Control,” Journal of Contaminant Hydrology, Vol. 40, pp. 183-200 (1999).
60. 涂秀娟,“奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2007)。
61. Johnson, T. L., M. M. Scherer, and P. G. Tratnyek, “Kinetics of Halogenated Organic Compound Degradation by Iron Metal,” Environmental Science & Technology, Vol. 33, No. 8, pp. 2634-2640 (1996).
62. Lien, H. L. and W. X. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 191, pp. 97-105 (2001).
63. 曹茂盛、關長斌、徐甲強,“奈米材料導論”,學富文化事業有限公司,台北市 (2002)。
64. 郭正次、朝春光,“奈米結構材料科學”,全華科技圖書股份有限公司,台北市 (2004)。
65. 施周、張文輝,“環境奈米技術”,五南圖書出版股份有限公司,台北市 (2006)。
66. Glavee, G. N., K. J. Klabunde, C. M. Sorensen, and G. C. Hadjipanayis, “Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe0, FeB, and Fe2B Powders,” Inorganic Chemistry, Vol. 34, No. 1, pp. 28-35 (1995).
67. Li, F., C. Vipulanandan, and K. K. Mohanty, “Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 223, pp. 103-112 (2003).
68. Kanel, S. R. and H. Choi, “Removal of Arsenic from Groundwater by Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material,” International Symposium on Environmental Nanotechnology, pp. 191-193 (2004).
69. Choe, S., Y. Y. Chang, K. Y. Hwang, and J. Khim, “Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,” Chemosphere, Vol. 41, pp. 1307-1311 (2000).
70. Choe, S., S. H. Lee, Y. Y. Chang, K. Y. Hwang, and J. Khim, “Rapid Reductive Destruction of Hazardous Organic Compounds by Nanoscale Fe0,” Chemosphere, Vol. 42, pp. 367-372 (2001).
71. Schrick, B., J. L. Blough, A. D. Jones, and T. E. Mallouk, “Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles,” Chemistry of Materials, Vol. 14, No. 12, pp. 5140-5147 (2002).
72. Feng, J. and T. T. Lim, “Pathways and Kinetics of Carbon Tetrachloride and Chloroform Reductions by Nano-Scale Fe and Fe/Ni Particles: Comparison with Commercial Micro-Scale Fe and Zn,” Chemosphere, Vol. 59, pp. 1267-1277 (2005).
73. Elliott, D. W. and W. X. Zhang, “Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment,” Environmental Science & Technology, Vol. 35, No. 24, pp. 4922-4926 (2001).
74. 張德光,“結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2005)。
75. 楊金鐘、洪志雄、涂秀娟,“奈米級鈀/鐵雙金屬對於水溶液中TCE之降解反應動力初步探討”,第三屆土壤與地下水研討會論文集光碟,中壢市 (2005)。
76. 林耿慧,“在液體?婺鶗洫堇R步的膠體粒子”,物理雙月刊,27卷3期,第470-474頁 (2005)。
77. Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, “Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions,” Environmental Science & Technology, Vol. 40, No. 1, pp. 284-290 (2007).
78. 楊金鐘、洪志雄、張德光,“奈米級鈀/鐵雙金屬:製備、基本性質及催化活性”,第二屆環境保護與奈米科學技術研討會論文集,第48-55頁,新竹市 (2005)。
79. Alessi, D. S. and Z. Li, “Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-Valent Iron,” Environmental Science & Technology, Vol. 35, No. 18, pp. 3713-3717 (2001).
80. 楊金鐘、張德光、洪志雄,“奈米級零價鐵懸浮液之分散性質初步探討”,第一屆環境保護與奈米科技學術研討會論文集,第45-50頁,新竹市 (2004)。
81. He, F. and D. Zhao, “Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,” Environmental Science & Technology, Vol. 39, No. 9, pp. 3314-3320 (2005).
82. 楊金鐘、洪志雄、張永宜,“環境友善之奈米級零價鐵合成技術開發”,第四屆環境保護與奈米科技學術研討會論文集,第271-274頁,台中市 (2007)。
83. Wu, L., M. Shamsuzzoha, and S. M. C. Ritchie, “Preparation of Cellulose Acetate Supported Zero-Valent Iron Nanoparticles for the Dechlorination of Trichloroethylene in Water,” Journal of Nanoparticle Research, Vol. 7, pp. 469-476 (2005).
84. Schrick, B., B. W. Hydutsky, J. L. Blough, and T. E. Mallouk, “Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater,” Chemistry of Materials, Vol. 16, 2187-2193 (2004).
85. Saleh, N., T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry, “Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the Oil/Water Interface,” Nano Letters, Vol. 5, No. 12, pp. 2489-2494 (2005).
86. Saleh, N., K. Sirk, Y. Liu, T. Phenrat, B. Dufour, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry, “Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media,” Environmental Engineering Science, Vol. 24, No. 1, pp. 45-57 (2007).
87. Rosen, M. J. and H. A. Goldsmith, “Systematic Analysis of Surface-Active Agents,” 2rd Ed., John Wiley & Sons, Inc., New York (1972).
88. Clint J. H., “Surfactant Aggregation, ” Chapman and Hall, New York (1992).
89. 趙承琛“界面活性劑化學”,復文書局,台南市 (1986)。
90. 賴碧玉,“乳液安定性控制因素”,碩士學位論文,元智大學化學工程學系,中壢市 (2001)。
91. 姚泰宇,“凹凸棒黏土的黏度及乳液的研究”,碩士學位論文,靜宜大學應用化學研究所,台中縣 (2002)。
92. 趙承琛,“界面科學基礎”,復文書局,台南市 (1987)。
93. Vane, M. L. and G. M. Zang, “Effect of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-Osmotic Permeability: Implications for Electro-Kinetic Soil Remediation Processes,” Journal of Hazardous Materials, Vol. 55, No. 3, pp. 1-22 (1997).
94. Azzam, M. O, M. Al-Tarazi, and Y. Tahboub, “Anodic Destruction of 4-Chlorophenol Solution,” Journal of Hazardous Materials, Vol. B75, No. 2, pp. 99-113 (2000).
95. Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and C. Y. Xu, “Effects of Soil Composition on the Removal of Chromium by Electrokinetics,” Journal of Hazardous Materials, Vol. 55, No. 3, pp. 135-158 (1997).
96. 李曉嵐,“奈米鐵粉結合電動力法整治受硝酸鹽污染之地下水”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2003)。
97. Yang, G. C. C. and H. L. Lee, “Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways,” Water Research, Vol. 39, pp. 884-894 (2005).
98. Yang, G. C. C., S. L. Li and C. H. Hung, “Treatment of Nitrates in the Subsurface Environment by Nanosized Zero-Valent Iron Wall Enhanced by Electrokinetic Remediation,” Journal of the Chinese Institute of Environmental Engineering, Vol. 14, No. 4, pp. 255-260 (2004).
99. 洪源駿,電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2002)。
100. Katsoyiannis, I. A., H. W. Althoff, H. Bartel, and M. Jekel, “The Effect of Groundwater Composition on Uranium (VI) Sorption onto Bacteriogenic Iron Oxides,” Water Research, Vol. 40, pp. 3646-3652 (2006).
101. ASTM, “Standard Test Method for Specific Gravity of Soil,” ASTM D854-83 (1983).
102. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.61C,(2005)。
103. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.61C,(2002)。
104. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539-579, Elsevier Scientific (1980).
105. Head, K. H., Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests, Pentech Press Limited, Plymouth, Devon, 249 (1980).
106. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202. 60A,(1995)。
107. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, Reuse”, 3rd Ed., McGraw-Hill, Inc., New York, pp. 1045 (1991).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code