Responsive image
博碩士論文 etd-0827108-003538 詳細資訊
Title page for etd-0827108-003538
論文名稱
Title
具高品質因子之懸浮式微型電感器設計與製作
Design and Fabrication of High Quality-factor Suspending Microinductors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-08-27
關鍵字
Keywords
面型微加工技術、低損耗、高品質因子、懸浮式微型電感器
Suspending Micro-inductor, Low Power Dissipation, High Quality Factor, Surface Micromachining
統計
Statistics
本論文已被瀏覽 5695 次,被下載 8
The thesis/dissertation has been browsed 5695 times, has been downloaded 8 times.
中文摘要
針對4G 無線通訊系統之應用,本論文致力於開發一種具高品質
因子(High-quality-factor)與低損耗(Low-power-dissipation)之懸浮式微
型電感器(Suspending micro-inductor),主要運用的製程技術為電化學
沉積與面型微加工技術。
為了提升懸浮式微型電感器之品質因子與降低其能量損耗,本論
文提出下列三種方法:(i)採用較低電阻之銅薄膜做為元件之導線材
料,藉此可減少集膚效應(Skin effect)所產生的渦電流(Eddy current),
如此可降低導線之串聯電阻值以減少能量損耗;(ii)利用懸浮結構之
設計以減少基板的能量損耗;(iii)採用康寧玻璃基板(Corning 7740)取
代矽基板,以大幅降低元件於高頻操作時之能量損耗。
本論文所研發完成的懸浮式微型電感器,其高頻特性(0.5~20GHz)
是藉由商用網路分析儀(Agilent E5071C)所量測而得;所有量測的數
據(包含電感值與品質因子)皆進一步透過Agilent ADS 軟體萃取與分
析。最佳化的懸浮式微型電感器之品質因子高達24.9 左右且其相對
應之電感值為5.43 nH。
Abstract
For the application of 4G wireless communication system, this thesis
aims to develop a high-quality-factor and low-power-dissipation
suspending micro-inductor using electrochemical deposition and surface
micromachining technologies.
This research presents three technical points to improve the quality
factor and reduce the power dissipation of micro inductor, including (i) to
adopt a low resistivity material (copper) as the conducting layer to
decrease the Eddy current due to the skin effect and reduce the total series
resistance and energy loss, (ii) to utilize a suspending structure to
diminish the power loss through the substrate and (iii) to replace the
silicon wafer with a high resistance substrate (Corning 7740) to compress
effectively the power dissipation in high frequency operation.
The implemented suspending micro-inductors were characterized by a
commercial network analyzer (Agilent E5071C) under 0.5~20 GHz
testing frequency range. All the inductances and quality factors of the
micro-inductors proposed in this thesis are extracted by the Agilent ADS
software. The optimized value of the quality factor is around to 24.9 and
the corresponding inductance is equal to 5.43 nH .
目次 Table of Contents
摘要 ..................................................................................................... I
ABSTRACT .............................................................................................II
誌謝 .................................................................................................. III
目錄 .................................................................................................. IV
圖目錄 .................................................................................................. VI
表目錄 ................................................................................................... X
第一章 緒論......................................................................................... 1
1-1 前言................................................................................................ 1
1-2 文獻回顧與研究動機.................................................................... 3
1-3 實驗方法與論文架構.................................................................... 6
第二章 元件原理與材料特性介紹..................................................... 7
2-1 懸浮式微型電感器之理論............................................................ 7
2-2 懸浮式微型電感器品質因子之影響因素.................................... 9
2-3 懸浮式微型電感器之自我共振頻率.......................................... 13
2-4 懸浮式微型電感器之集膚效應與輻射性損耗.......................... 15
2-5 銅之材料特性與銅薄膜圖形製版技術...................................... 17
第三章 元件設計與製作流程........................................................... 19
3-1 電化學銅薄膜沉積原理介紹與最佳化參數.............................. 19
3-2 懸浮式微型電感器之佈局與結構設計...................................... 21
3-3 懸浮式微型電感器之製程整合.................................................. 23
3-3-1 製作流程..........................................................................23
3-3-2 製程步驟與參數..............................................................24
3-4 實驗設備規格.............................................................................. 31
第四章 結果與討論........................................................................... 37
4-1 實驗結果與討論.......................................................................... 37
4-1-1 氮化鉭/鉭/銅(TaN/Ta/Cu)之底電極掀離開發..............37
4-1-2 銅薄膜之表面微結構與組成分析..................................39
4-1-3 懸浮式微型電感器之SEM 圖結構分析.......................43
4-2 懸浮式微型電感器之電性分析.................................................. 47
4-2-1 懸浮式微型電感器之電感值量測與分析.....................47
4-2-2 懸浮式微型電感器之品質因子量測與分析.................57
第五章 結論與建議........................................................................... 65
5-1 結論.............................................................................................. 65
5-2 建議.............................................................................................. 67
參考文獻.............................................................................................. 68
參考文獻 References
[1] H. Lakdawala, X. Zhu, S. Santhanam, L. R. Carley and G. K. Fedder,
“Micromachined high-Q inductors in a 0.18 copper interconnect low-k
dielectric CMOS process,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 3, pp. 394–403, March 2002.
[2] C. L. Dai, J. Y. Hong and M. C. Liu, “High Q-factor CMOS-MEMS
inductor,” DTIP of MEMS and MOEMS, France, April, 2008.
[3] L. Gu and X. Li, “Concave-Suspended High-Q Solenoid Inductors
With an RFIC-Compatible Bulk-Micromachining Technology,” IEEE
Transactions on Electron Devices, vol. 54, no. 4, pp. 882–885, April
2007.
[4] L. Gu and X. Li, “High-Q Solenoid Inductors With a CMOS-Compatible
Concave-Suspending MEMS Process,” Journal of
Microelectromechanical Systems, vol. 16, no. 5, pp. 1162–1172, October
2007.
[5] J. W. Lin, C. C. Chen, and Y. T. Cheng, “A robust high-Q micromachined
RF inductor for RFIC applications,” IEEE Transactions on Electron
Devices, vol. 52, no. 7, pp. 1489–1496, April 2005.
[6] J. B. Yoon, Y. S. Choi, B. Kim, Y. Eo, and E. Yoon, “CMOS-compatible
surface-micromachined suspended-spiral inductors for multi-GHz
silicon,” IEEE Electron Device Letters, vol. 23, no. 10, pp. 591–593,
October 2002.
[7] J. Y. Park and M.G. Allen, “Packaging-compatible high Q microinductors
and microfilters for wireless applications,” IEEE Transactions on
Advanced Packaging, vol. 22, no. 2, pp. 207–213, May 1999.
[8] J. Zeng, C. Wang, and A. J. Sangster, “Theoretical and Experimental
Studies of Flip-Chip Assembled High-Q Suspended MEMS Inductors,”
IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 6,
pp. 1171–1181, June 2007.
[9] J. B. Yoon, C. H. Han, E. Yoon, and C. K. Kim, “High-performance
three-dimensional on-chip inductors fabricated by novel micromachining
technology for RF MMIC,” IEEE MTT-S International Microwave
Symposium Digest, pp. 1523–1526, June 1999.
[10] J. B. Yoon, C. H. Han, E. Yoon, and C. K. Kim, “Monolithic high-Q
overhang inductors fabricated on silicon and glass substrates,” IEEE
International Electron Device Meeting, pp. 753–756, December 1999.
[11] Y. J. Kim and M. G. Allen, “Surface micromachined solenoid inductors
for high frequency applications,” IEEE Transactions on Components,
Packaging, and Manufacturing Technology, Part C, vol. 21, no. 1, pp.
26–33, January 1998.
[12] P. J. Bell, N. D. Hoivik, and R. A. Saravanan, “Flip-Chip-Assembled
Air-Suspended Inductors,” IEEE Transactions on Advanced Packaging,
vol. 30, no. 1, pp. 148–154, February 2007.
[13] X. N. Wang, X. L. Zhao, Y. Zhou, X. H. Dai, and B. C. Cai, “Fabrication
and Performance of a Novel Suspended RF Spiral Inductor,” IEEE
Transactions on Electron Devices, USA, 2004.
[14] K. L. Scott, T. Hirano, H. Yang, H. Singh, R. T. Howe, and A. M.
Niknejad, “High-performance inductors using capillary based fluidic
self-assembly,” Journal of Microelectromechanical Systems, vol. 13, no.
2, pp. 300–309, April 2004.
[15] C. M. Tai and C. N. Liao, “Multilevel Suspended Thin-Film Inductors on
Silicon Wafers,” IEEE Transactions on Electron Devices, vol. 54, no. 6,
pp. 1510–1514, June 2007.
[16] S. Jenei, B. K. J. C. Nauwelaers, and S. Decoutere, “Physics-Based
Closed-Form Inductance Expression for Compact Modeling of Integrated
Spiral Inductors,” IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp.
77–80, January 2002.
[17] R. K. Ulrich and L. W. Schaper, Integrated Passive Compont Technology,
USA: John Wiely & Sons, Inc., 2003.
[18] H. Ronkainen, H. Kattelus, E. Tarvainen, T.Riihisaari, M.Andersson, and
P. Kuivalainen, “IC compatible planar inductors on silicon,” IEEE
Circuits, Devices and Systems, vol. 144, no. 1, pp. 29–35, February 1997.
[19] J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Microwave Inductors
and Capacitors in Standard Multilevel Interconnect Silicon Technology,”
IEEE Trans. Microwave Theory and Techniques, vol. 44, no. 1, pp.
100–104, January 1996.
[20] H. Y. Tsui and J. Lau, “An on-chip vertical solenoid inductor design for
multigigahertz CMOS RFIC,” IEEE Transactions on Microwave Theory
and Technique, vol. 53, no. 6, pp. 1883–1890, June 2005.
[21] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple
Accurate Expressions for Planar Spiral Inductances,” IEEE Journal of
Solid-State Circuits, vol. 34, no. 10, pp. 1419–1424, October 1999.
[22] Y. K. Koutsoyannopoulous and Y. Papananos, “Systematic Analysis and
Modeling of Integrated Inductors and Transformers in RFIC Design,”
IEEE Transactions on Circuits and Systems (II), vol. 47, no. 8, pp.
699–713, August 2000.
[23] J. R. Long and M. A. Copeland, “The modeling, characterization and
designed monolithic inductors for silicon RF ICs,” IEEE Journal
Solid-State Circuits, vol. 32, pp. 357–369, March 1997.
[24] B. Piernas, K. Nishikawa, K. Kamogawa, T. Nakagawa, and K. Araki,
“High-Q factor three-dimensional inductors,” IEEE Transactions on
Microwave Theory and Techniques, vol. 50, no. 8, pp. 1942–1949, August
2002.
[25] H. M. Hsu and M. M. Hsieh, “On-chip inductor above dummy metal
patterns,” Solid-State Electronics , vol. 52, no. 7, pp. 998–1001, July
2008.
[26] Y. Tang, B. Liu, L. Zhang, J. Pan, L. Yang, and Y. Wang, “Modeling of
double-π equivalent circuit for on-chip symmetric spiral inductors,”
Solid-State Electronics , vol. 52, no. 7, pp. 1058–1063, July 2008.
[27] C. P. Yue and S. S. Wong, “Physical Modeling of Spiral Inductors on
Silicon,” IEEE Transactions on Electron Devices, vol. 47, no. 3, pp.
560–568, March 2000.
[28] C. P. Yue and S. S. Wong, “On-Chip Spiral Inductors with Patterned
Ground Shields for Si-Based RF IC’s,” IEEE Journal of Solid-State
Circuits, vol. 33, no. 5, pp. 743–752, May 1998.
[29] O. H. Murphy, K. G. McCarthy, C. J. P. Delabie, A. C. Murphy, and P. J.
Murphy, “Design of multiple-metal stacked inductors incorporating an
extended physical model,” IEEE Transactions on Microwave Theory and
Techniques , vol. 53, no. 6, pp. 2063–2072, June 2005.
[30] 翁敏航 編著,“射頻被動元件設計”,台灣東華書局,2006。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.39.23
論文開放下載的時間是 校外不公開

Your IP address is 13.58.39.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code