Responsive image
博碩士論文 etd-0827108-123254 詳細資訊
Title page for etd-0827108-123254
論文名稱
Title
具高線性度與低遲滯現象之電容式微型濕度感測器研究
A Study on High-linearity and Low-hysteresis Capacitive Humidity Microsensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-08-27
關鍵字
Keywords
低遲滯效應、高線性度、聚亞醯胺、電容式微型濕度感測器、相對濕度
Polyimide (PI), Low Hysteresis, High Linearity, Capacitive Relative Humidity (RH) Microsensor, Relative Humidity (RH)
統計
Statistics
本論文已被瀏覽 5697 次,被下載 11
The thesis/dissertation has been browsed 5697 times, has been downloaded 11 times.
中文摘要
人們長期處於高濕度的環境下,容易因病菌、塵蹣造成過敏反應
或引發氣喘。本論文致力於研發具高線性度與低遲滯效應之電容式微
型濕度感測器,以更精確地提供居住環境的濕度量測。
為了降低遲滯效應與增強線性度,本研究不僅使用一層聚亞醯胺
薄膜以當作感測層,更在感測器上覆蓋另一層聚亞醯胺薄膜以保護上
電極。而且更進一步地將電極設計為不共平面交錯式電極,以改善感
測靈敏度與反應速度。本論文中的濕度感測器,其主要製程步驟包含
五道黃光微影與四層薄膜的沉積製程;感測面積、電極對數以及環境
溫度對於靈敏度與線性度的影響將於本論文中探討。
根據量測結果,靈敏度明顯地隨著感測面積增加而增加(2 mm ×
2 mm:0.12 pF/%RH,3 mm × 3 mm:0.48 pF/%RH,5 mm × 5 mm:
1.09 pF/%RH),並隨著電極對數減少而降低(40 pairs:1.09 pF/%RH,
20 pairs:0.4 pF/%RH),而環境溫度的升高也會增加感測靈敏度。本
論文已驗證了此濕度感測器在相對濕度為30~70%RH之間,其電容值
的變化與相對濕度的改變呈現相當線性的關係( 線性度為
98.8%~99.99%)。最後,為了增加與空氣接觸的表面積以更進一步降
低遲滯效應,設計了三維結構的水氣進出孔,並得到一非常低之遲滯
效應(0.5%RH)。
Abstract
People for long term exposed to an air-conditioned but highly humid environment
are vulnerable to hyper-sensitivity or asthma triggered by fungi or dust mites. This
thesis aims to develop a high-linearity and low-hysteresis capacitive relative humidity
(RH) microsensor to more precisely accommodate the humidity of living spaces.
To reduce the hysteresis and enhance the linearity, this research uses not only one
polyimide (PI) thin film as a humidity sensing layer but also utilizes another PI thin
film as a protecting layer of the top electrodes. To improve further the RH sensitivity
and responding speed, interlacing out-of-plane electrodes are designed in the RH
microsensor. The main processing steps of the RH sensor developed in this study
involve at least five photolithographic and four thin film deposition processes. The
influences of sensing area, number of electrode pairs and testing temperature on the
sensitivity and sensing linearity of humidity microsensors were investigated.
Based on the measurement results, the sensitivity apparently increase as well as
the sensing area (2 mm × 2 mm: 0.12 pF/%RH, 3 mm × 3 mm: 0.48 pF/%RH, 5 mm ×
5 mm: 1.09 pF/%RH), and decrease with the number of electrode pairs (40 pairs: 0.51
pF/%RH, 20 pairs: 0.4 pF/%RH) and increase with the testing temperature. The thesis
has demonstrated that the capacitance of the RH sensor vary from the relative
humidity with a very linear relationship (linearity: 98.8%~99.99%) over the range of
30~70%RH. Finally, to increase effectively the surface area and to reduce further the
hysteresis, three-dimensional (3D) moisture entrances and exits were designed and a
very low hysteresis value (0.5%RH) can be achieved.
目次 Table of Contents
摘要.............................................................................................................I
Abstract.....................................................................................................III
誌謝..........................................................................................................IV
目錄...........................................................................................................V
圖目錄...................................................................................................VIII
表目錄......................................................................................................XI
第一章 緒論..............................................................................................1
1-1 前言..............................................................................................1
1-2 研究動機......................................................................................4
第二章 濕度感測器之原理介紹..............................................................6
2-1 濕度與濕度表示法......................................................................6
2-1-1 濕度(Humidity)..................................................................6
2-1-2 飽和濕度(Saturation Humidity)…....................................7
2-1-3 百分率濕度(Percentage Humidity)...................................7
2-1-4 相對濕度(Relative Humidity)...........................................7
2-2 濕度感測器之種類......................................................................8
2-2-1 MOS 型濕度感測器...........................................................9
2-2-2 電解質濕度感測器..........................................................10
2-2-3 陶瓷式濕度感測器..........................................................11
2-2-4 高分子式濕度感測器......................................................12
2-2-4-1 電阻式高分子濕度感測器....................................13
2-2-4-2 電容式高分子濕度感測器....................................15
2-3 電容式微型濕度感測器之研究................................................16
2-3-1 感測原理..........................................................................16
2-3-2 聚亞醯胺薄膜之特性......................................................17
2-3-2-1 聚亞醯胺之介電常數與數學模型........................25
第三章 元件設計與製作流程................................................................28
3-1 電容式微型濕度感測器之光罩佈局設計................................28
3-2 電容式微型濕度感測器之製程整合設計................................32
3-2-1 製作流程..........................................................................32
3-2-2 製程步驟與參數..............................................................34
3-3 實驗設備規格............................................................................40
第四章 結果與討論................................................................................48
4-1 實驗結果與討論........................................................................48
4-1-1 聚亞醯胺對鋁電極之影響..............................................48
4-2 元件特性與分析........................................................................51
4-2-1 第一階段之量測與分析-元件幾何參數最佳化..........52
4-2-2 第二階段之量測與分析-環境因素對元件之影響......56
第五章 結果與未來展望........................................................................60
5-1 結論............................................................................................60
5-2 未來展望....................................................................................62
參考文獻..................................................................................................63
參考文獻 References
[1] 「微機電系統技術與應用」 ,行政院國家科學委員會精密儀器
發展中心出版,2003。
[2] Geankoplis, “Transport processes and unit operations” Chap 6,
Prentic-Hall inc., 1995.
[3] F. W. Dunmore, “An electrometer and its application to radio
meteorography,” pp.723-744, 1938.
[4] 李標榮,「電子傳感器」,國防工業出版社,1993。
[5] S. P. Lee, “FET Humidity Sensors Based on Titanium Oxide Film,”
Proceedings of the 5th International Conference , Volume:2,
pp.1066 –1069, 1997.
[6] P. Shuk, “Solid Electrolyte Film Humidity Sensor”, Solid State
Ionics 113–115, pp.229–233, 1998.
[7] K. S. Chou, “Sensing Mechanism of A porous Ceramic as Humidity
Sensor,” Sensors and Actuators B 56, pp.106–111, 1999.
[8] W. Qu, “A Novel Thick-film Ceramic Humidity Sensor,” Sensors
and Actuators B 40, pp.175-182, 1997.
[9] Y. Sakai, “Humidity Sensors Based on Polymer Thin Films,”
Sensors and Actuators B 35-36, pp.85-90, 1996.
[10] M. R. Yang, “Humidity Sensors Using Polyvinyl Alcohol Mixed
with Electrolytes”, Sensors and Actuators B 49, pp.240-247, 1998.
[11] M. Grigorie, “A Circuit for The Temperature Compensation of
Capacitive Sensors,” Circuits and Systems, 1996. ISCAS '96, 1996IEEE International Symposium, pp.381 –384, 1996.
[12] Y. Sakai, Y. Sadaoka, M. Matsuguchi, “Humidity sensors based on
polymer thin films,” Sensors and Actuators B 35-36, pp.85-90, 1996.
[13] T. Hubert, “Humidity-Sensing Materials”, MRS BULLETIN,
pp.49-54, 1999.
[14] J. G. Fagan, V. R. W. Amarakoon, “Humidity Sensor,” American
Ceramic Sociery Bullerin 72, pp.119-130, 1993.
[15] M. Jose, M. Perez, C. Freyre, “A poly(ethylene terephtha late)
-based humidity sensor,” Sensors and Actuators B 42, pp.27-30,
1997.
[16] Y. Sakai, Y. Sadaoka ,M. Matsuguchi, “Humidity sensors based on
polymer thin films,” Sensors and Actuators B 35-36, pp.85-90,
1996 .
[17] A. R. K. Ralston, C. F. Klein, P. E. Thoma, D. D. Denton ,“A model
for the relative environmental stability of a series of polyimide
capacitance humidity sensors,” Sensors and Actuators B 34,
pp.343-348, 1996.
[18] W. M. Edwards, I. M. Robinson, U.S. Pat., 2 710 853 a pat., 2 712
543, 1955.
[19] 周森,「複合材料-奈米、生物科技」,全威圖書有限公司。
[20] J.Laconte, V. Wilmart, D. Flandre, J. P. Raskin, “Hight-Sensitivity
Capacitive Humidity Sensor Using 3-Layer Patterned Polyimide
Sensing Film,” IEEE sensors, Vol .1, pp.372-377, 2003.
[21] HD Microsystem, Pyralin PI-272X Processing Guidelines.
[22] Y. Shimamura, T. Urabe, A. Todoroki and H. Kobayashi,“Measurement of Moisture Absorption Ratio of FRP Using Micro
Polymer Sensor,” Key Engineering Materials Vol.270-273,
pp.1957-1964, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.172.252
論文開放下載的時間是 校外不公開

Your IP address is 18.223.172.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code