Responsive image
博碩士論文 etd-0827108-162825 詳細資訊
Title page for etd-0827108-162825
論文名稱
Title
活性碳紙纖濾網塗覆奈米光觸媒分解丙酮之研究
Decomposition of Acetone by Nano-sized Photocatalysts Coated on Activated Carbon Cellulose-paper Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-12
繳交日期
Date of Submission
2008-08-27
關鍵字
Keywords
活性碳紙纖濾網、光催化反應、丙酮分解效率、TiO2光觸媒、操作參數、反應動力模式
L-H kinetic model, photocatalytic reaction, activated carbon cellulose-paper filter (ACCF), operating parameters, titanium dioxide (TiO2) photocatalyst, acetone decomposition
統計
Statistics
本論文已被瀏覽 5738 次,被下載 2052
The thesis/dissertation has been browsed 5738 times, has been downloaded 2052 times.
中文摘要
本研究旨在將光催化分解氣相污染物技術與活性碳紙纖濾網(ACCF)吸附技術加以結合,利用活性碳富集氣相污染物之特性,快速將氣相污染物吸附,再利用光催化分解技術更有效率的將氣相污染物予以分解。
本研究所選擇之氣相污染物為丙酮,選擇兩種市售TiO2光觸媒(光觸媒Ⅰ及光觸媒Ⅱ)以含浸法塗覆於活性碳紙纖,並採用批次式光催化氧化反應系統進行吸附反應和光催化反應。實驗探討之操作參數包括丙酮初始濃度(4.1~10.2 μM)、反應溫度(40℃~70℃)及水氣含量(以相對濕度%表示)(0~20%)。光催化反應器上方置放四支20W近紫外光燈管(λ=365 nm)為光源,內部則放置披覆TiO2之ACCF,丙酮則以氣密式注射針筒(gasket syringe)注入,進行批次光催化氧化反應實驗。反應物及產物分析係分別以氣相層析儀/電子捕捉偵測器(GC/ECD)、氣相層析儀/火燄離子加以偵測器配合甲烷轉換器(GC/FID-Methaneizer)偵測並定量之,最後進一步建立反應動力模式。
由光觸媒篩選之結果得知,本研究所採用之兩種光觸媒中,以光觸媒Ⅱ之光催化效應較佳,製備之光觸媒活性碳纖濾網之粒徑範圍介於20~70 nm,屬於奈米微粒,產物以CO和CO2為主,礦化率高達98%。另就操作參數實驗結果得知,提高丙酮初始濃度,不利於活性碳紙纖濾網吸附丙酮,但對於丙酮之反應速率影響不大;提高反應溫度,雖不利於ACCF之吸附,但整體而言有助於丙酮之光催化分解速率,對產物CO和CO2之生成和礦化率皆有幫助;水氣的添加會降低ACCF吸附丙酮之能力,並導致丙酮光催化分解效率略為降低,顯示水氣的存在會與丙酮造成競爭吸附而佔據光觸媒表面之活化位址,使光催化丙酮效率逐漸降低。因此,本研究顯示TiO2/ACPF可藉由活性碳紙纖之吸附能力,提高丙酮的質傳速度,提升光觸媒分解破壞效率及使用價值,並藉由光觸媒之催化分解,使活性碳紙纖不致吸附飽和而具長效性,且提升光觸媒處理效率,並能有效延長活性碳紙纖之使用時間。
此外,本研究應用相互競爭且反應之雙分子Langmuir- Hinshelwood (L-H)反應動力模式,建立丙酮之反應動力模式,模擬在不同反應溫度、丙酮初始濃度及水氣含量下,光催化氧化丙酮之反應情形模式推導,模擬結果顯示,實驗值與模擬值均相當吻合,同時也成功模擬光催化氧化丙酮反應速率。因此,氣相丙酮在TiO2表面的光催化反應速率可使用L-H 反應動力模式加以描述。
Abstract
This study combined photocatalytic technology with activated carbon cellulose-paper filter (ACCF) adsorption to decompose gaseous pollutants. Gaseous pollutants were initially adsorbed by activated carbon and could be further decomposed by photocatalytic technology.
This study selected acetone (CH3COCH3) as gaseous pollutants. Two market available photocatalysts (photocatalystsⅠandⅡ) were coated on ACCF by impregnation to decompose acetone in a batch photocatlytic reactor. Operating parameters investigated in this study included initial acetone concentration (4.1~10.2 μM), reaction temperature (40~70℃), and water vapor (0~20 %). The incident UV light of 365 nm was irradiated by a 20-watt low-pressure mercury lamp placing above the batch photocatalytic reactor. The ACCF coated with TiO2 was placed at the center of the photocatalytic reactor. Acetone was injected into the reactor by a gasket syringe to conduct the photocatalytic tests. Reactants and products were analyzed quantitatively by a gas chromatography with an electron capture detector (GC/DCD) and a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer). Finally, a Langmiur-Hinshewood (L-H) kinetic model was proposed to describe the rate of photocatalytic reaction.
Results obtained from the photocatalytic tests indicated that photocatalystⅡ was better than photocatalystⅠ for the decomposition of acetone. Experimental results indicated that the size range of self-produced TiO2 photocatalyst by sol-gel was 20~70 nm. The end products were mainly CO and CO2, which resulted in the mineralization ratio up to 98%. Results obtained from the operating parameter tests revealed that the increase of initial acetone concentration enhanced the amount of acetone adsorbed on ACCF, which however did not increase the reaction rate of acetone. Although the increase of reaction temperature could reduce the amount of acetone adsorbed on ACCF, the decomposition rate of acetone could be promoted, so as the yield rate and mineralization ratio of products (CO and CO2). The increase of water vapor could slightly decrease the amount of acetone adsorbed on ACCF. The competitive adsorption phenomenon between acetone and water molecules on active sites could decelerate the decomposion of acetone. Moreover, the ACCF would not be saturated since the adsorbed acetone could be further decomposed quickly by the photocatalysts, which made the TiO2/ACCF more effective on removing acetone and lasted longer than the conventional ACCF.
Finally, a modified bimolecular Langmuir-Hinshelwood kinetic model was developed to investigate the influences of initial acetone concentration reaction, temperature, and relative humidity on the promotion and inhibition for the photocatalytic oxidation of acetone. The modified L-H kinetic model could successfully simulate the photocatalytic reaction rate of acetone. Thus, the reaction rate of acetone over TiO2/ACCF could be described by the modified L-H kinetic model.
目次 Table of Contents
頁次
謝誌………………………………………………………………….. I
中文摘要…………………………………………………………….. II
英文摘要...………………………………………………………....... IV
目錄…….………………………………………….…………............ VI
表目錄..….………………………………………….……….............. IX
圖目錄….…………………………………………………………..... X
第一章 前言………………………………………………….……. 1-1
1-1 研究緣起……………………………………...……...…….. 1-1
1-2 研究目的…………………………………………..……….. 1-4
1-3 研究範圍…………………………………………..……….. 1-5
第二章 文獻回顧….………………………………………………. 2-1
2-1 光觸媒之發展趨勢及應用………………………..……….. 2-1
2-2 光催化反應原理及特性…………………...………………. 2-2
2-2-1 光催化反應基本原理…………………………………. 2-2
2-2-2 光觸媒表面吸附現象…………………………………. 2-6
2-3 光觸媒種類及特性…………………………….................... 2-8
2-3-1 光觸媒種類……………………………………………. 2-8
2-3-2 二氧化鈦結構及特性…………………………………. 2-10
2-3-3 二氧化鈦之製備方法…………………………………. 2-13
2-4 活性碳紙纖濾網…………………………………………… 2-17
2-4-1 活性碳紙纖濾網之製備及組成………………………. 2-17
2-4-2 活性碳紙纖濾網之特性…………………...………….. 2-17
2-5 活性碳及二氧化鈦之協同作用.…………………..………. 2-19
2-6 影響光催化反應參數……………………………………… 2-20
2-6-1 光強度的影響……………………………….………… 2-20
2-6-2 溫度的影響……………………………………………. 2-21
2-6-3 水氣含量的影響………………………………………. 2-22
2-7 丙酮之特性及危害……………………………………….... 2-24
2-8 光催化反應動力模式……………………………………… 2-25
2-8-1 光催化反應動力步驟…………………………………. 2-25
2-8-2 等溫吸附線……………………………………............. 2-27
2-8-3 反應動力模式……………………………………......... 2-28
第三章 研究方法………………………………………………….. 3-1
3-1 實驗材料及製備方法…………………………………….... 3-1
3-1-1 實驗材料………………………………………………. 3-1
3-1-2 二氧化鈦光觸媒塗覆方法……………………………. 3-4
3-2 實驗設備…………………………………………………… 3-5
3-2-1 光催化反應系統………………………………………. 3-5
3-2-2 反應物及產物分析系統………………………………. 3-6
3-3 光催化分解實驗規劃……………………………………… 3-6
3-3-1 操作參數及範圍………………………………………. 3-6
3-3-2 反應器測漏測試………………………………………. 3-7
3-3-3 均相光反應測試…….………………………………… 3-7
3-3-4 不照光紙纖吸附測試…………………………………. 3-8
3-3-5 不照光載體吸附試……………………………………. 3-8
3-4 分析方法…………………………………………………… 3-8
3-4-1 二氧化鈦特性之分析…………………………………. 3-8
3-4-2 反應物及產物分析……………………………………. 3-9
3-4-3 品保與品管…………..………………………………... 3-11
第四章 結果與討論….…...................................………………….. 4-1
4-1 光觸媒基本特性分析結果………………………………… 4-1
4-1-1 表面結構分析結果……………………………………. 4-1
4-1-2 比表面積分析結果……………………………………. 4-5
4-1-3 晶相分析結果…………………………………………. 4-5
4-2 實驗系統測試結果…………………...……………………. 4-8
4-2-1 反應器測漏測試結果…………………………………. 4-9
4-2-2 均相光反應測試結果……………………….………… 4-9
4-2-3 不照光反應器吸附測試結果…………………………. 4-11
4-2-4 不照光活性碳紙纖吸附測試結果…………..………... 4-11
4-2-5 不同載體對於丙酮吸附與光催化作用測試結果……. 4-12
4-3 操作參數對光催化分解丙酮之影響…………………….... 4-13
4-3-1 丙酮初始濃度對光催化分解丙酮之影響……….…… 4-13
4-3-2 反應溫度對光催化分解丙酮之影響…………….…… 4-21
4-3-3 水氣含量對光催化分解丙酮之影響…………….…… 4-29
4-4 產物分析結果……………...……………………….……… 4-37
4-4-1 操作條件對光催化分解丙酮產物之影響………….… 4-37
4-4-2 產物之碳平衡…………...…………………….………. 4-40
4-5 光催化反應動力模式之解析…………...………….……… 4-43
第五章 結論與建議……………………..………………………… 5-1
5-1 結論………………………...……………………………... 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻........................................................................................ R-1
附錄A 反應物及產物之分析圖譜……………………………….. A-1
附錄B 反應物及產物之檢量線………………………………….. B-1
參考文獻 References
Anderson, M.A., Yamazaki-Nishida, A., and Cervera-March, S., “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, p.405 (1993).
Anderson, M.A., and Ha, H.Y., “Photocatalytic Degration of Formic Acid via Metal-supported Titania,” Journal of Environment Engineering, 122, p.217-221 (1996).
Anpo, M., Yamashita, H., Ikeue, K., , Fujishima, Y., Zhang, S.G., Ichihashi, Y., Park, D.R., Suzuki, Y., Koyano, K., and Tatsumi, T., “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, 44, p.327-332 (1998).
Ao, C.H., “Enhancement Effect of TiO2 Immobilized on Activated Carbon Filter for the Photodegration of Pollutants at Typical Indoor Air Level,” Applied Catalysis B: Environmental, 44, p.191-205 (2003).
Atkinson, R., “Gas-phase Tropospheric Chemistry of Organic Compounds: a Review,” Atoms. Environ. 41, p.200-240 (2007).
Augugliaro, V`., Coluccia, S., Loddo, V., Marchese, L., Martra, G., “Photocatalytic Oxidation of Gaseous Toluene Onanatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation,” Applied Catalysis B-Environmental, 20, p.15-27 (1999).
Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and Romero, M., “Photocatalyyic Destruction of Toluene and Xylene at Gas Phase on a Titania Based Monolithic Catalyst,” Catal. Today, 29, p.437-442 (1996).
Brasquet, C. and Cloirec, P.L., “Adsorption onto Activated CarbonFibers :Application to Water and Air Treatments,” Carbon, 35(9), p.1307-1313 (1997).
Cao, L., Huang, A., Spiess, F.-J., and Suib, S.L., “Gas-phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts,” J. Catal. 188, p.48-57 (1999).
Coleman, H.M., Vimonses, V., Leslie, G., and Amal, R., “Degradation of 1,4-dioxane in water using TiO2 based Photocatalytic and H2O2/UV Processes,” Journal of Hazardous Materials, 146, p.496-501 (2007).
David, A.H., Ronald, J.G., Colin, B.N., and Edward, A.R., “Chemistry,” Allyn and Bacon, New York (1986).
d’Hennezel, O., Pichat, P., and Ollis, D. F., “Benzene and Toluene Gas-phase Photocatalytic Degradation over H2O and HCl Pretreated TiO2: By-products and Mechanisms,” J. Photochem. Photobiol. A: Chem. 118, p.197-204 (1998).
Dibble, L.A., and Raupp, G.B., “Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near-UV Illuminated Titanium Dioxide,” Catal. Lett., 4, p.345 (1990).
Drissen, M.D., and Grassian, V.H., “Photooxidation of Trichloro-ethylene on Pt/TiO2,” J. Phys. Chem. B, 104, p.1418-1423 (1998).
Falconer, J.L. and Magrini-Bair, K.A., “Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2,” J. Catal., 179, p.171-178 (1998).
Fogler, H.S., “Elements of Chemical Reaction Engineering,” 3rd ed. Prentice Hall (1999).
Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem. Rev., 93, p.341-357 (1993).
Fu, X.F., Clark, L.A., Zeltner, W.A., and Anderson, M.A., “Effect of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal Photochem. Photobiol., 97, p.181-186 (1996).
Fu, X., Zeltner, W.A., and Anderson, M.A., “The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-based Catalysts,” Appl. Catal. B: Environ., 6, p.209-224 (1995).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., and Kera, Y., “Photocatalytic Oxidation of Nitrogen Oxides Over Titania-zeolite Composite Catalyst to Remove Nitrogen Oxides in the Atmosphere,” Applied Catalysis B: Environmental, 30, p.429-436 (2001).
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev., 20, p.69 (1995).
Howe, R.F. and Gratzel, M., “EPR Study of Hydrated Anatase under UV Irradiation,” J. Phys. Chem., 91, p.3906 (1987).
Hugenschmidt, M.B., Gamble, L., and Campbell, C.T., “The Interaction of H2O with a TiO2(110) Surface,” Surf. Sci. 302, p.329 (1994).
Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” ES&T, 31, p.562-568 (1997).
Jacoby, A.W., Blake, D.M., Fennell, J.A., Boulter, J.E., and Vargo, L.M., “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J.A&WMA, 46, p.891-898 (1996).
Jacoby, A.W., Blake, D.M., Noble, R.D., and Koval, C.A., “Kinetic of the Oxidation of Trichlorothylene in Air via Heterogeneous Photocatalysis,” J. Catal., 157, p.87-96 (1995).
Jardim, W.F., Aiberic, R.M., Takiyama, M.K., and Huang, C.P., “Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA (1994).
Kato, K., “Synyhesis of TiO2 Photocatalyst with High Activity by the Alkoxide Method,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, p.809 (1993).
Kim, S., Park, J.K., and Hee-Dong, C., “Pyrolysis Kinetics of Scrap Tire Rubbers. I: Using DTG and TGA,” J. Environ. Eng., 121 p.507-514 (1995).
Kurtz, R.L., Stockbauer, R., Madey, T.E., Roman, E., and de Segovia, J.L., “Synchrotron Radiation Studies of H2O Adsorption on TiO2(110),” Sur. Sci., 218, p.178 (1989).
Li, C.H., Hsieh, Y-H., Chiu, W.T., Liu, C.C., and Kao, C.L., “Study on Preparation and Photocatalytic Performance of Ag/TiO2 and Pt/TiO2 Photocatalysts,” Separation and Purification Technology, 58, p.148-151 (2007).
Liljestand, H.M. and Sattler, M.L., “Photocatalytic Oxidation Processes for Indoor Air Pollution,” The 89th Air & Waste Management Assoication Annual Meeting, June (1996).
Linsebigler, A.L., Lu, G., and Yates, J.T., “Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results,” Chemistry Reviews, 95, p.735-758 (1995).
Luo, Y. and Ollis, D.F., “Heterogeneous Photocatalytic Oxidation of Trichlorethylene and Toluene Mixture in Air: Kinetic Promotion and Inhibition, Time-dependent Catalyst Activity,” J. Catal., 163, p.1-11 (1996).
Maira, A.J., Yeung, K.L., Soria, J., Coronado, J.M., Belver, C., Lee, C.Y., and Augugliaro, V., “Gas-phase Photo-oxidation of Toluene Using Nanometer-size TiO2 Catalysts,” Applied Catalysis B:Environmental, 29, p.327-336 (2001).
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., and Schiavello, M., “The Role of H2O in the Photocatalytic Oxidation of Toluene in Vapour Phase on Anatase TiO2 Catalyst A FTIR Study,” Catal. Today, 53, p.695-702 (1999).
Martin, S.T., Herrmann, H., Choi, W., and Hoffmann, M.R., “Time-resolved Microwave Conductivity,” J. Chem. Soc. Faraday Trans. I., 90, p.3315-3322 (1994).
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., and Schiavello, M., “The Role of H2O in Photocatalytic Oxidation of Toluene in Vapor-phase on Anatase TiO2 Catalyst-A FTIR Study,” Catal. Today, 53(4), p.695-702 (1999).
Matos, J., Laine J., and Herrmann, J.-M., “Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon,” Applied Catalysis B: Environmental, 18, p.281-291 (1998).
Matthews, R.W., “Kinetics of Photocatalytic Oxidation of Organic Solutesover Titanium Dioxide,” J. Catal., 111, p.264 (1988).
Molinari, E. and Tomellini, M., “Impact of Electron–hole Pair Excitation on the Kinetics of Exoergic Processes at Metal Surfaces,” Surface Science (2008).
Nimlos, M.R., Wolfrum, E.J., Brewer, M.L., Fennell, J.A., and Bintner, G.B., “Gas-phase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathway and Kinetic Modeling”, ES&T, 30, p.3102 (1996).
Nuida, T., Kanai, N., Hashimoto, K., Watanabe, T., and Ohsaki, H., “Enhancement of photocatalytic activity using UV light trapping effect,” Vacuum, 74, p.729-733 (2004).
Obee, T.N. and Brown, R.T., “TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene, ” ES&T, 29, p.1223 (1995).
Obee, T.N. and Hay, S.O., “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania, ” ES&T, 31 p.2034 (1997).
Peill, N.J. and Hoffmann, M.R., “Chemical and Physical Characterization of a TiO2-coated Fiber Optical Cable Reactor,” ES&T, 30, p.2806-2812 (1996).
Peral, J. and Ollis, D.F., “Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and M-xylene Oxidation,” J. Catal., 134, p.554 (1992).
Rafael, M.R. and Nelson, C.M., “Relationship between the Formation of Surface Species and Catalyst Deactivation During the Gas-phase Photocatalytic Oxidation of Toluene,” Catal. Today, 40, p.353-365 (1998).
Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., 72, p.321 (1993).
Schiavello, M. and Sclafani, A., “Thermodynamic and Kinetic Aspects of Photocatalysis,” in Photocatalysis Fundamental and Applications, edited by Serpone, N. and Pelizztti, E. John Wiley & Sons, New York (1989).
Venkatachalam, N., Palanichamy, M., and Murugesan, V., “Sol–gel Preparation and Characterization of Nanosize TiO2: Its Photocatalytic Performance,” Materials Chemistry and Physics, 104, p.454-459 (2007).
Vorontsov, A.V., Kurkin, E.N., and Savinov, E.N., “ Study of TiO2 Deactivation during Gaseous Acetone Photocatalytic Oxidation,” J. Catal., 186, p.318-324 (1999).
Wang, W. and Ku, Y., “Photocatalytic Degradation of Gaseous Benzene in Air Streams by Using an Optical Fiber Photoreactor”, J. Photochem. Photobiol. A: Chem., 159, p.47-59 (2003).
Wang, K.H., Tsai, H.H., and Hsieh, Y.H., “The Kinetics of Photocatalytic Degradation of Trichloroethylene in Gas Phase over TiO2 Supported on Glass Bead,” Appl. Catal. B: Environ., 17, p.313-320 (1998).
Yoneyama, H., “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for Photodestruction of Organic Substances of Dilute Concentrations,” Catal. Today, 58, p.133-140 (2000).
Zelmanov,G. and Semiat, R., “Iron(3) Oxide-based Nanoparticles as Catalysts in Advanced Organic Aqueous Oxidation.” Water Research, 42, p.492-298 (2008).
劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,pp.15-31,1993。
巫玉娟,“活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究”,國立中山大學環境工程研究所碩士論文,2005。
袁中新、吳政峰、蕭德福,“二氧化鈦光觸媒分解含氯有機污染物之研究(III)-添加微量貴金屬光觸媒提升四氯乙烯去除率及礦化率並探討對反應產物之影響”,國科會研究報告,NSC 89-2211-E-110-004,2000。
吳永俊、袁中新、董正釱、洪崇軒,“以近紫外光/二氧化鈦催化分解三氯乙烯之研究”,第十三屆空氣污染控制技術研討會論文集,pp.223-232,1996。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
顧洋、江立偉,“以TiO2光觸媒催化程序處理氣相丙酮污染物反應行為之研究”,第二十一屆空氣污染控制技術研討會論文集,pp.704-714,11月26-27日,2004。
李怡涵,“釓參雜二氧化鈦的製備及性質測定”,國立中山大學材料科學研究所博士論文,2006。
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6 卷,pp.52-68,1997。
吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究”,國立中山大學環境工程研究所碩士論文,2007。
陳仁智,“含二氧化鈦光觸媒之粒狀活性碳在液”,大同大學化學工程研究所碩士論文,2004。
陳威錦,“熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究”,國立中山大學環境工程研究所碩士論文,2004。
陳冠宏,“以Cu/ACF 觸媒處理含氨水溶液之研究”,國立中山大學環境工程研究所碩士論文,2003。
潘冠廷,“含活性碳與奈米二氧化鈦不織布製備及其對異丙醇光分解測試”,第一屆環境保護與奈米科技學術研討會,2004。
吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究”,國立中山大學環境工程研究所碩士論文,2000。
林芝寧,“新竹地區毒性化學物質流布之風險評估”,淡江大學水資源及環境工程學系碩士論文,2001。
游振煥,“建物塗裝VOCs逸散特性之研究”,第二十一屆空氣污染控制技術研討會,2004。
林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分析方法建立”,國立清華大學原子科學系碩士論文,1999。
王國華,“以UV/TiO2程序處理氣相中三氯乙烯之研究”,國立中興大學環境工程研究所博士論文,1998。
洪楨琳,“溫度與濕度效應對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響”,國立中山大學環境工程研究所碩士論文,2000。
吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,國立中山大學環境工程研究所博士論文,2005。
羅卓卿,“應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究”,國立中山大學環境工程研究所博士論文,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code