Responsive image
博碩士論文 etd-0827108-175856 詳細資訊
Title page for etd-0827108-175856
論文名稱
Title
利用熱重分析法探討含硫活性碳之氯化汞吸附及脫附研究
Adsorption and Desorption of Mercury Chloride on Sulfur-impregnated Activated Carbon by Thermogravimetric Analysis (TGA)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-12
繳交日期
Date of Submission
2008-08-27
關鍵字
Keywords
脫附能、粉狀活性碳、熱重分析法(TGA)、加硫改質、氯化汞吸附
adsorptive capacity, sulfur impregnation, powdered activated carbons, thermogravimetric analysis (TGA), desoption heating
統計
Statistics
本論文已被瀏覽 5709 次,被下載 3738
The thesis/dissertation has been browsed 5709 times, has been downloaded 3738 times.
中文摘要
在都市垃圾焚化處理過程中,由於垃圾分類未能確實執行,使得焚化垃圾中夾雜許多有害物質,而這些有害物質往往無法藉由焚化或空氣污染控制設備予以去除。在都市垃圾成份中以重金屬物質最難處理,其中又以含汞污染物較為人們所重視,其對環境及人體健康之危害甚鉅。汞金屬及其化合物(如:氯化汞)因具有較高之蒸氣壓,故在焚化爐高溫環境下極易揮發而隨廢氣排出,若未能以空氣污染控制設備(Air Pollution Control Devices; APCD)予以有效去除,則會排放至大氣中,再經由不同的傳播途徑對環境生態造成嚴重影響。
活性碳已被廣泛應用於吸附有機物質及重金屬污染物,但隨著溫度越高則吸附量越少,將活性碳吸附劑添加其他的化學物質,可以改變活性碳表面之吸附特性,並增加對特定污染物之吸附量。研究顯示以含浸法所備製的硫化活性碳可用於去除燃煤電廠及都市垃圾焚化爐中零價汞(Hgo)蒸氣,但其加硫改質的硫多半為元素硫(S),且所吸附之物質多為元素汞(Hgo),對於氯化汞(HgCl2)之吸附較少,且很少探討活性碳加硫改質前後之比表面積(specific surface area)、孔徑分佈(pore size distribution)及硫在活性碳孔隙之分佈情形。有鑑於此,本研究旨在利用熱重分析法探討自製含硫活性碳之氯化汞吸附及脫附機制。
本研究實驗結果發現,加硫改質後活性碳之比表面積雖然會降低,但確實可以提高活性碳之含硫量;而改質溫度400 ℃之活性碳比表面積比改質溫度650 ℃略小,但含硫量卻高出許多。在吸附溫度150 ℃操作條件下,含硫活性碳之氯化汞吸附容量因氣固平衡反應之故,隨氯化汞進流濃度之增加而有升高之趨勢;而含硫量越高其相對吸附量越高;而活性碳比表面積越大其吸附量亦越高。由不同升溫速率所得之脫附速率(DTG)隨溫度變化趨勢圖,可求出氯化汞在自製含硫活性碳之脫附能(Ed)為823 KJ/mole,比氯化汞之汽化熱59.2 KJ/mole高出許多,顯示含硫活性碳吸附氯化汞應屬化學性吸附。由於脫附為吸熱反應,因此提供熱能有利於脫附反應之進行,所以脫附溫度越高越能縮短脫附所需時間。此外,由吸附飽和活性碳之表面特性可判定活性碳吸附氯化汞後可能生成HgS產物。由含硫活性碳再生結果得知,恆溫脫附時間越長,其再生次數則越少,乃因活性碳內的硫會隨脫附時間增加而脫附,進而降低含硫活性碳吸附氯化汞之能力,導致氯化汞吸附量之降低,從而減少加硫改質活性碳之再生次數。
Abstract
This study investigated the adsorptive and desorption capacity of HgCl2 onto powdered activated carbon derived from carbon black of pyrolyzed waste tires (CPBAC) via thermogravimetric analysis (TGA).
Due to incomplete classification and recycling of municipal solid wastes (MSW), they still mix with a lot of hazardous materials, which unfortunately can not be removed by incinerators and air pollution control devices(APCDs). Among them, mercury and its pollutants attract more attention by people. Mercury and its pollutants emitted from the incineration of municipal solid wastes could cause severely adverse effects on human health and ecosystem since they exist mainly in vapor phase due to high vapor pressure. If they can not be remove by the air pollution control devices, they will be emitted to the atmosphere and cause serious effects on environmental ecology via various routes.
Activated carbon has been widely applied to the treatment of organic compounds and heavy metals in wastewater and waste gas stream. However, the adsorptive capacity of activated carbon decreases with adsorption temperature. The low adsorptive capacity of activated carbon at high temperature (>150 oC) can be overcome by impregnated activated carbons. Previous study reported that sulfur impregnated powdered activated carbons could effectively remove the vapor-phase elemental mercury (Hgo) emitted from MSW incinerators and utility power plants. However, the impregnated typically used is sulfur (S) which is solely applied for the adsorption of elemental mercury (Hgo). Besides, these studies seldom investigate the distribution of impregnated sulfur in the inner pores of activated carbon and its effects on the specific surface area and pore size distribution. Thus, this study was to investigate the fundamental mechanisms for the adsorption/desorption of HgCl2 by/from sulfur impregnated PAC.
Experimental results indicated that the sulfur content of sulfur impregnated CBPAC decreased with increasing impregnation temperatures form 400 to 650 oC; while the surface area of sulfur impregnated CBPAC increased with impregnation temperatures. In this study, TGA was applied to obtain the adsorptive capacity of HgCl2 onto CBPAC with adsorption temperature (150oC) and influent HgCl2 concentration (100~500 μg/m3). Experimental results indicated that the adsorptive capacity of CBPAC increased with the increase of influent HgCl2 concentration and surface area of the activated carbon. This study revealed that the impregnation of sulfur on CBPAC could increase its adsorption capacity at high temperatures.
Desorption experimental parameters included desorption temperature (400, 500, and 600 oC), heating rate (10, 15, and 20 oC /min) and regeneration cycle (1~7 cycles). In probing into the regeneration efficiency of CBPAC, experiments were conducted at the desorption times of 60 and 30 min. The results suggested the regeneration efficiency of carbon under 30 min was generally highter than that under 60 min. Because the desorption time was more longer and the sulfur content was lesser. Therefore, the regeneration times was reduce. Experimental results indicated that the mechanism of HgCl2 desorption from the spent CPBAC was strongly affected by desorption temperature. Both the desorption efficiency and the desorption rate of HgCl2 increased dramatically with desorption temperature. The desorption heat of HgCl2 (823 KJ/mole) was much higher than the vaporization heat of HgCl2 (59.2 KJ/mole), indicating that the adsorption of HgCl2 on sulfur impregnated CBPAC was chemical adsorption. Consequently, raising desorption temperature could enhance the desorption of HgCl2 and shorten the duration for HgCl2 desorption. Moreover, the formation of HgS during the desorption of HgCl2 from activated carbons can be proved by the surface characteristics of sulfur impregnated activated carbons. Results obtained from the regeneration of sulfur impregnated activated carbons indicated that the regeneration cycles decreased as the desorption duration increased. It was attributed to the potential desorption of sulfur from actived carbons, which thus decreased the adsorptive capacity and the regeneration cycles.
目次 Table of Contents
目 錄
中文摘要….…………………………..……….…………………. I

英文摘要…………………………………………………………. III

目錄..……………………………………………………………... VI

表目錄….…………………………………...…………………..... IX

圖目錄……………………………………………………………. XI

第一章 前言…………………………….....…………………….. 1-1
1-1 研究緣起…………………………………………........... 1-1
1-2 研究目的………………………………………………... 1-2
1-3 研究流程………………………………………………... 1-2
第二章 文獻回顧……………………………………….……….. 2-1
2-1 含汞污染物之來源及種類……………………………... 2-1
2-1-1 含汞污染物之來源…………….………………..... 2-1
2-1-2 含汞污染物之物種型態………..………………… 2-7
2-1-3 含汞污染物之排放標準………..………………… 2-7
2-1-4 含汞污染物之控制技術………..………………… 2-8
2-2 含汞污染物之物化特性及影響………………………... 2-11
2-2-1 含汞污染物之物理及化學特性…….….………… 2-12
2-2-2 含汞污染物對人體健康之影響………….………. 2-14
2-3 活性碳之種類及特性…………………………………... 2-15
2-3-1 活性碳之種類…………………………………….. 2-15
2-3-2 活性碳之物理化學特性………………………….. 2-16
2-4 活性碳吸附重金屬之原理……………….…………….. 2-18
2-4-1 活性碳吸附機制(Adsorption Mechanism)……….. 2-18
2-4-2 等溫吸附曲線(Adsorption Isotherm).……………. 2-20
2-4-3 吸附滯後現象(Hysteresis loop)…….……………. 2-22
2-4-4 活性碳脱附機制(dsorption Mechanism)………… 2-23
2-4-5 活性碳吸(脫)附重金屬汙染物之應用…………... 2-25
2-4-6 含硫活性碳對重金屬吸(脫)附機制之影響……... 2-26
2-5 活性碳加硫改質方法及特性…………………………... 2-27
2-6 熱重分析儀(TGA)之原理及應用……………………… 2-28
2-6-1 熱重分析儀之原理……………………………….. 2-28
2-6-2 熱重分析儀之應用……………………………….. 2-29
第三章 研究方法……………………………………………….. 3-1
3-1 實驗設計與流程………………………………………... 3-1
3-2 實驗材料與設備………………………………………... 3-3
3-2-1 實驗材料………………………………………….. 3-3
3-2-2 活性碳加硫改質系統…………………………….. 3-5
3-2-3 分析儀器系統…………………………………….. 3-5
3-3 實驗方法…………………………................................... 3-7
3-3-1 活性碳吸(脫)附實驗.............…………….............. 3-7
3-3-1-1 活性碳吸附實驗……………………………… 3-7
3-3-1-2 活性碳脫附實驗………………………………. 3-8
3-3-2 比表面積與孔徑分佈…………………………….. 3-8
3-3-3 元素成份分析..……………………….................... 3-9
3-3-4 冷蒸氣原子螢光光譜儀…….……….................... 3-11
3-3-5 熱重分析儀與校正氣體產生器…….................... 3-12
第四章 結果與討論……………………………………………... 4-1
4-1 加硫改質活性碳物理特性分析………………………... 4-1
4-1-1 加硫改質活性碳外觀構造…………….................. 4-1
4-1-2 比表面積及孔隙分析結果………………............. 4-3
4-2 加硫改質活性碳化學特性分析………………...……… 4-6
4-3 加硫改質活性碳吸附氯化汞之熱重分析……………... 4-9
4-3-1 不同比表面積之含硫活性碳吸附結果………….. 4-9
4-3-1-1 高含硫量活性碳之吸附結果……………......... 4-9
4-3-1-2 低含硫量活性碳之吸附結果……………......... 4-10
4-3-2 不同氯化汞進流濃度之含硫活性碳吸附結果….. 4-15
4-3-2-1 高含硫量活性碳之吸附結果……………......... 4-15
4-3-2-2 低含硫量活性碳之吸附結果……………......... 4-15
4-3-3 不同含硫量活性碳之氯化汞吸附結果………….. 4-21
4-3-3-1 相同比表面積活性碳之氯化汞吸附結果……. 4-21
4-3-3-2 相同氯化汞進流濃度之活性碳吸附結果……. 4-22
4-4 吸附飽和之含硫活性碳脱附氯化汞之熱重分析……... 4-29
4-4-1 不同升溫速率下脱附氯化汞之熱重分析………. 4-29
4-4-2 不同脫附溫度下脱附氯化汞之熱重分析……….. 4-32
4-4-2-1 高含硫量活性碳之氯化汞脫附結果……......... 4-33
4-4-2-2 低含硫量活性碳之氯化汞脫附結果…............. 4-40
4-5 含硫活性碳再生結果…………………........................... 4-49
第五章 結論與建議……………………….……………………. 5-1
5-1 結論……………………………………..………………. 5-1
5-2 建議……………………………………………………... 5-3
參考文獻………………………………………………………… R-1
附錄A 分析檢量線….…………………………………………. A-1
附錄B 實驗數據ㄧ覽表….…………………………………….. B-1
參考文獻 References
1.Ames, M., Gullu, G., and Olmez, I., “Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York,” Atmos. Environ., Vol.32, pp.865-872, 1998.
2.Barbooti, M.M., Hassen, E.B., and Issa, N.A., “Thermogravemetric and pyrolytic investigation of scrap tires,” J. Petro. Res. Vol.8, pp.229-242, 1989.
3.Biswas, P. and Wu, C.Y., “Control of toxic metal emissions from combustors using sorbents: a review,” J. Air & Waste Manage. Assoc. Vol.48, pp.113-127, 1998.
4.Cannon, F.S., Dusenbury, J.S., Paulsen, J., Sigh, D.W., and Maurer, D.J., “Advanced oxidant regeneration of granular activated carbon for controlling air-phase VOCs,” Ozone Sci. Eng. Vol.18(5) , pp.417-441, 1996.
5.Carey, T.R., Hargrove, O.W. Jr., and Richardson, C.F., “Factors affecting mercury control in utility flue gas using activated carbon,” J. Air & Waste Manage. Assoc. Vol.48, pp.1166-1174, 1998.
6.Chen, W.C., Syue, S.H., Lin, H.Y., and Yuan, C.S., “Desorption of mercuric chloride from spent powdered activated carbons via thermogravimetric analysis,” 14th IUAPPA World Congress, Brisbane, Australia, 2007.
7.Cherrmisinoff, P.L. and Ellerbusch, F., “Carbon adsorption handbook,” Ann Arbor Science Publishers Inc., 1978.
8.Cooper, D.C. and Alley, F.C., “Air pollution control a design approach handbook,” 1998.
9.Dubinin, M.M., “Adsorption properties and microporous structure of carbonaceous adsorbents,” Carbon, Vol.25, pp.593-589, 1987.
10.Fan, M. and Brown, R.C., “Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash,” Energy & Fuel, Vol.15, pp.1414-1417, 2001.
11.Flora, J.R.V., Vidic, R.D., Liu, W., and Thurnau, R.C., “Modeling powdered activated carbon injection for the uptake of elemental mercury vapors,” J. Air & Waste Manage. Assoc. Vol.48, pp.1051-1059, 1998.
12.Franklin Associates, Ltd., EPA530-R-92-013, US EPA, Washington, DC, 1992.
13.Galbreath, K.C. and Zygarlicke, C.J., “Mercury transformations in coal combustion flue gas,” Fuel Process. Technol. Vol.65-66, pp.289-310, 2000.
14.Glass, G.E., Sorensen, J.A., Schmidt, K.W., Rapp, R.G., Yap, Jr.D., and Fraser, D., “Mercury deposition and sources for the upper great lakes region,” Water, Air, and Soil Pollu., Vol.56, pp.235-249,1991.
15.Gomez-Serrano, A., Macias-Garcia, A., Espinosa-Mansilla, A., and Valenzulela-Calahorro, C., “Adsorption of mercury, cadmium and lead from aqueous-solution on heat-treated and sulphurized activated carbon,” Water Res., Vol.32, pp.1-4,1998.
16.Harriott, P. and Chang, A.T.Y., “Kinetics of spent activated carbon regeneration,” AICHE Journal, Vol.34, pp.1656-1662, 1988.
17.Harrison, R.M. and Rapsomanikis, S., “Enviromental analysis using chromatography interfaced with atomic spectroscopy,” Ellis Horwood, Chichester, England, 1989.
18.Hall B., Lindqvist O., and Ljungstrom E., “Mercury chemistry in simulated flue gases related to incineration conditions,” Environ. Sci. Technol. Vol.24, pp.108-111, 1990.
19.Hartenstein, H.U. and Horvay, M., “Overview of municipal waste incineration industry in west Europe (based on the German experience),” J. Hazard. Mater. Vol.47 (1-3), pp.19-30, 1996.
20.Hladíková, V., Petrík, J., Jursa, S., Ursínyová, M., and Kočan, A., “Atmospheric mercury levels in the slovak republic,” Chemosphere, Vol.45, pp.801-806, 2001.
21.Ho, T.C., Yang, P., Kuo, T.H., and Hopper, J.R., “Characteristics of mercury desorption from sorbents at elevated temperatures,” Waste Manage. Vol.18, pp.445-452, 1998.
22.Hsi, H.C., Rood, M. J., Rostam-Abadi, M., Chen, S., and Chang, R., “Effects of Sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers,” Environ. Sci. Technol. Vol.35, pp.2785-2791, 2001
23.Hunsicker, M.D., Crockett, T.R., and Labode, B.M.A., “An overview of the municipal waste incineration industry in Asia and the former Soviet Union,” J. Hazard. Mater. Vol.47(1-3), pp.31-42, 1996.
24.Innanen, S., “The ratio of anthropogenic to natural mercury release in Ontario: Three emission scenarios,” Sci. Total Environ. Vol.213, pp.25-32, 1998.
25.Jasinski, S.M., “The materials flow of mercury in the United States. Res. Conserv,” Recycl. Vol.15(3-4), pp.145-179, 1995.
26.Karatza, D., Lancia, A., Musmarra, D., Pepe, F., and Volpicelli, G., “Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon,” Combust. Sci. Technol. Vol.112, pp.163-174, 1996.
27.Kim, K., “Carbon-electronchemical and physicochemical properties,” John Wiley & Sons, New York, 1987.
28.Kim, S., Park, J.K., and Hee-Dong, C., “Pyrolysis kinetics of scrap tire rubbers. I: using DTG and TGA,” J. Environ. Eng. pp.507-514, 1995.
29.Korpiel, J.A. and Vidic, R.D., “Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-Phase Mercury,” Environ. Sci. Technol. Vol.31, pp. 2319-2325, 1997.
30.Krishnan, S.V., Gullett, B.K., and Jozewicz, W., “Sorption of elemental mercury by active carbon,” Environ. Sci. Technol., Vol.28, pp.1506-1512, 1994.
31.Krishnan, A.K. and Anirudhan, T.S., “Uptake of Heavy Metals in Batch Systems by Sulfurized Steam Activated Carbon Prepared from Sugarcane Bagasse Pith,” Ind. Eng. Chem. Res. Vol.41, pp.5085-5093, 2002.
32.Lim, J.L. and Okada, M., “Regeneration of granular activated carbon using ultrasound,” Ultrason. Sonochem. Vol.12, pp.277-282, 2005.
33.Liu, W., Vidic, R.D., and Brown, T.D., “Optimization of sulfur impregnation protocal for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal,” Environ. Sci. Technol. Vol.32, pp.531-538, 1998.
34.Martin, R.J. and Ng, W.J., “Chemical regeneration of exhausted activated carbon-II,” Water Res. Vol.19, pp.1527-1536, 1985.
35.Nakagawa, R., “Studies on the levels in atmospheric concentrations of mercury in Japan,” Chemsophere, Vol.32, pp.2669-2676, 1995.
36.Nakano, Y., Hua, L.Q., Nishijima, W., and Okada, M., “Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC),” Water Res. Vol.34, pp.4139-4142, 2000.
37.Ollero, P., Serrera, A., Arjona, R., and Alcantarilla, S., “Diffusional effects in TGA gasification experiments for kinetic determination,” Fuel, Vol.81, pp.1989-2000, 2002.
38.Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal D.L., and Benson, S.A., “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. Vol.82, pp.89-165, 2003.
39.Pichon, C., Risoul, V., Trouve, G., Peters, W.A., Gilot, P., and Prado, G., “Study of evaporation of organic pollutants by thermogravimetric analysis:experiments and modeling,” Thermochimica Acta, Vol.306, pp.143-151, 1997.
40.Popescu, M., Jolu, J.P., Carre, J., and Danatoiu, C., “Dynamical adsorption and temperature-programmed desorption of VOCs on activated carbons,” Carbon, Vol.41, pp.739-748, 2003.
41.Ruthven, D.M. “Principles of Adsorption and Adsorption Processes,” John Wiley & Sons, 1984.
42.Rodriguez-Reinoso, F., “The role of carbon materials in heterogeneous catalysis,” Carbon, Vol.36, pp.159-175, 1998.
43.Sakata, M. and Marumoto, K., “Formation of atmospheric particulate mercury in the Tokyo metropolitan area,” Atmos. Environ. Vol.36(2), pp.239-246, 2002.
44.Salvador, F. and Jimenez, C.S., “A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions,” Carbon, Vol.34, pp.511-516, 1996.
45.Salvador, F. and Merchan M.D., “Study of the desorption of phenol and phenolic compounds from activated carbon by liquid-phase temperature-programmed desorption, ” Carbon, Vol.34, pp.1543-1511, 1996.
46.Salvador, F., Sánchez-Montero, M.J., Salvador, A., and Martín, M.J., “Study of the energetic heterogeneity of the adsorption of phenol onto activated carbons by TPD under supercritical conditions,” Applied Surface Science, Vol.252(3), pp.641-646, 2005.
47.Sandra Vitolo and Roberto Pini, “Deposition of sulfur from H2S on porous adsorbents and effect on their mercury adsorption capacity,” Geothermics, Vol.28, pp.341-354, 1999.
48.Schroeder, W.H., Yarwood,G., and Niki, H., “Transformation processes involving mercury species in the atmosphere-results from a literature survey,” Water, Air, and Soil Pollution, Vol.56, pp.653-666, 1991.
49.Senior, C., Chen, Z., and Sarofim, A., “Mercury oxidation in coal-fired utility boilers: validation of gas-phase kinetic models,” In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
50.Sinha, R.K. and Walker, P.L.J., “Removal of mercury by sulfurised carbons,” Carbon, Vol.10, pp.754-756, 1972.
51.Sjostrom, S., Ebner, T., and Slye, R., “MerCAP: a novel approach for vapor-phase mercury capture,” In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
52.Smisek, M. and Creny, S., “Activated carbon,” Elserier Publishing Company, Amsterdam, 1970.
53.Sorensen, J.A., Glass, G.E., Schmidt K.W., Huber J.K., and Rapp, G.R., “Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern Minnesota lakes,“ Environ. Sci. Technol., Vol.24, pp.1716-1727, 1990.
54.Torrents, A., Damera, R., and Hao, O.J., “Low-temperature thermal desorption of aromatic compounds from activated carbon,” J. Hazard. Mater. Vol.54, pp.141-153, 1997.
55.UNEP Chemicals, “Global mercury assessment,” Geneva, Switzerlands, December 2002.
56.Vidic, R.D., Chang, M.T., and Thurnau, R.C., “Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbon,” J.A&WMA, Vol.48, pp.247-255, 1998.
57.Walker, P.L., Cariaso, O.C., and Ismail, I.K.M., “Oxygen chemisorptions on as-received and acid-treated active carbon,” Carbon, Vol.18, pp.375-377, 1980.
58.Wängberga, I., Munthea, J., Pirroneb, N., Iverfeldta, A., Bahlmanc, E., Costab, P., Ebinghausc, R., Fengd, X., Ferrarae, R., Gardfeldtd, K., Kockc, H., Lanzillottae, E., Mamanef, Y., Masg, F., Melamedf, E., Osnatf, Y., Prestboh, E., Sommard, J., Schmolkec, S., Spaini, G., Sprovierib, F., and Tuncel, G., “Atmospheric mercury distribution in Northern Europe and in the Mediterranean region,” Atmos. Environ. Vol.35(17), pp.3019-3025, 2001.
59.Wei, L., Vicdic, R.D., and Brown, T.D., “Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal,” ES&T, Vol.32, pp.531-538, 1998.
60.Williams, P.T. and Besler, S., “Pyrolysis-thermogravemetric analysis of tyres components,” Fuel, Vol.74(9), pp.1277-1283, 1995.
61.Wu, S., Uddin, M.A., and Sasaoka, E., “Characteristics of the removal of mercury vapor in coal derived flue gas over iron oxide sorbents.” Fuel, Vol.85, pp.213-218, 2006.
62.Xiong, Youhui, Jiang, T., and Zou, X., “Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace,” Thermochim. Acta. Vol.408, pp.97-101, 2003.
63.粱添源,“以乳液吸收法去除有機廢氣之研究”,國立成功大學化學研究所碩士論文,1985。
64.陸仁傑,“環境污染與防治處理”,新學識文教出版中心,1988。
65.彭立浩,“應用活性碳吸附及溶劑脫附配合氣相層析-火焰離子化偵測器測定空氣中芳香烴化合物”,國立臺灣師範大學化學研究所碩士論文,1991。
66.楊英傑,“以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究”,國立成功大學化學工程研究所碩士論文,1992。
67.邱正宏,“吸附於活性碳表面揮發性有機物之熱脫附動力學研究”,國立中山大學環境工程研究所碩士論文,1993。
68.唐力原,“廢輪胎於氮+氧中熱分解反應動力參數之探討”,國立中山大學環境工程研究所碩士論文,1996。
69.蔣本基,“活性碳物理化學特性對VOCs吸附之影響”,工業污染防治, 第58期,1996。
70.蔣本基、張璞,“有機溶劑蒸氣之吸附及脫附研究” ,工業污染防治, 第58期,1996。
71.張木彬,“垃圾焚化爐排氣中重金屬量測及處理效率評估”,行政院環境保護署研究報告,1997。
72.劉瑞華,“低澤度揮發性有機物在吸附劑中之傳輸與平衡研究”,國立成功大學環境工程系(所)碩士論文,1998
73.廖志國,“操作條件對微波再生活性碳效率之影響及產物分析研究”,國立中山大學環境工程研究所碩士論文,1999。
74.洪旭文,“定量結構活性關係法預測活性碳吸附低濃度揮發性有機物之研究”,國立成功大學環境工程研究所碩士論文,2000。
75.劉明翰,“粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立”,國立中山大學環境工程研究所碩士論文,2001。
76.蔡木川,“石化污泥吸附劑對苯之吸附、脫附影響研究”,國立成功大學環境工程研究所碩士論文,2001。
77.張寶元,“以兩種活性碳吸附水中重金屬(銅、鉻)之研究”,東海大學環境科學系(所)碩士論文,2002。
78.陳威錦,“熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究”,國立中山大學環境工程研究所碩士論文,2003。
79.林曉洪,“耐燃藥劑雙重擴散處理對合板耐燃性效應之改善研究”,國立中興大學博士論文,2003
80.行政院環境保護署網頁,http://recycle.epa.gov.tw/main.asp,2003(a)。
81.行政院環境保護署網頁,http://w3.epa.gov.tw/epalaw/index.htm,2003(b)。
82.林勳佑,“資源再利用粉狀活碳吸附氣相氯化汞之研究”,國立中山大學環境工程研究所博士論文,2004。
83.袁中新、林勳佑,“應用熱重分析原理探討粉狀活性碳對含汞蒸氣吸附效能與吸附動力模式之研究”,國科會研究報告,NSC 93-2211-E-110-009,2005年7月。
84.蔡明秀,“竹炭製備條件對重金屬離子吸附效應”,國立臺灣大學森林環境暨資源學研究所碩士論文,2005。
85.陳威錦、薛聖翰、林勳佑、袁中新,“應用熱重分析技術探討飽和氯化汞活性碳之熱脫附動力研究”,NSC 94-2211-E-110-009,2005。
86.賴美君,“應用熱重分法探討有機氯農藥污染土壤之低溫熱脫附處理效果”,第一科技大學環境與安全衛生工程系(所)碩士論文,2005。
87.席行正、蔣政昇、陳志宗,“含硫活性碳去除低濃度氣相汞之可行性研究-吸附劑物化特性分析與吸附動力探討”,中華民國環境工程學會暨空氣污染控制技術研討會,2006。
88.蔣政昇,“低價含硫活性碳吸附劑去除低濃度氣相汞之可行性研究”,國立高雄第一科技大學環境與安全衛生工程系(所)碩士論文,2006。
89.黃理御,“硫含浸程序應用於活性碳去除煙道微量汞之影響”,國立高雄第一科技大學環境與安全衛生工程系(所)碩士論文,2007。
90.蘇明德,“化學動力學觀念與1000題”,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code