Responsive image
博碩士論文 etd-0827109-055027 詳細資訊
Title page for etd-0827109-055027
論文名稱
Title
功能性奈米結構陣列製作技術之研究
Study on Fabrication Technology of Functional Nanostructure Array
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
184
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-18
繳交日期
Date of Submission
2009-08-27
關鍵字
Keywords
燃料電池、太陽能電池、光子晶體、自組裝奈米球微影、光輔助電化學蝕刻、奈米結構陣列
photo-assisted electrochemical etching, nanostructure array, fuel cell, solar cell, photonic crystal, self-assembled nanosphere lithography
統計
Statistics
本論文已被瀏覽 5624 次,被下載 0
The thesis/dissertation has been browsed 5624 times, has been downloaded 0 times.
中文摘要
隨著奈米科技研究風潮的興起,許多奈米尺度下的特殊物理與化學性質,逐漸被人所發現。其中,一維奈米結構具有蓮花效應、高比表面積以及良好的電子發射特性,而結構呈現二維規則排列時,還將擁有光子晶體、蛾眼效應等特性。目前可用於定義奈米級圖案的微影技術,有電子束(Electron beam)、深紫外光(Deep ultraviolet, DUV)、X光(X-ray)等微影技術,但都有著設備昂貴的共通缺點,同時必須搭配感應耦合電漿反應性離子蝕刻(Inductively coupled plasma reactive ion etching, ICP-RIE)、電子迴旋共振式反應性離子蝕刻(Electron cyclotron resonance reactive ion etching, ECR-RIE)高成本之特殊設備與製程,才能製作高深寬比之矽質奈米結構陣列,此項門檻將使得學術界與中小型企業難以投入相關的研究。聚苯乙烯奈米球具有自組裝效應,能輕易定義出奈米等級的圖形陣列,稱之為自組裝奈米球微影(Self-assembled nanosphere lithography, SANSL)技術;而光輔助電化學蝕刻(Photo-assisted electrochemical etching, PAECE)技術,有著易於形成奈米級孔洞的優點,其蝕刻之深寬比可超過50:1,優於感應耦合電漿反應性離子蝕刻術的蝕刻效果,因而非常適合用於製作高深寬比之奈米結構。因此,本研究結合自組裝奈米球微影以及光輔助電化學蝕刻兩項技術之優點,用以實現低成本製作高深寬比的奈米結構陣列。
研究結果顯示,本研究以旋轉塗佈與震盪塗佈的方式,可獲得趨近完美排列的單層奈米球膜於1.8 ∗1.8 cm2的試片上。利用反應性離子蝕刻術(Reactive ion etching, RIE)將奈米球圖形轉移至氮化矽之上,以形成光輔助電化學蝕刻所需之蝕刻窗(Etching window)。而在HF濃度2.5 wt%的蝕刻液中進行光輔助電化學蝕刻實驗,使用蝕刻幕罩可獲得規則排列且深度較大的奈米孔洞。將界面活性劑SDSS加入光輔助電化學蝕刻液中,可降低蝕刻液的接觸角並避免孔洞產生擴孔現象。當使用1 V的蝕刻電壓與,經過12.5分鐘的蝕刻後,能夠產生深度5.69 μm,直徑為90 nm的孔洞,而孔洞的深寬比可達到63:1。若增加蝕刻電壓時,孔洞的寬度將隨之增加,同時蝕刻深度則逐漸減少。當施以2 V的蝕刻電壓時,經過5分鐘的蝕刻後,可製作出高度為2 μm,直徑為100 nm的柱體,而柱體的深寬比可達到20:1。且奈米柱將隨著奈米球的定義而排列,因此具有陣列化的排列現象。
將具有生物樣本之溶液滴入奈米柱間隙中,將影響穿越奈米結構光源的極化光變化,並產生特定極化光參數。研究結果顯示,將純水加入於入奈米柱結構時,極化光參數分別為極化度0.981、方位角4.86°,而橢圓率為2.83°。而含有5 μg/ml大腸桿菌的溶液加入奈米柱結構時,極化光參數分別變為極化度0.957、方位角7.7°,而橢圓率為3.99°。由此可知,極化光參數的變化與溶液中的生物樣本濃度有關。因此將極化光測試系統結合奈米柱陣列,可應用於光子晶體生物感測器之研發。此外,利用本研究所開發出的奈米孔洞結構陣列,製作太陽能電池的抗反射結構。結果顯示當結構越深時,抗反射效能越佳。其中使用1 V與5分鐘光輔助電化學蝕刻參數的試片,於280-890 nm波段範圍,可將矽的加權平均反射率降低至1.73 %。再配合200 Å的氮化矽抗反射膜,可使加權平均反射率可進一步降低至0.878 %。最後,本研究亦利用不同的光輔助電化學蝕刻電壓,產生表面積不同的奈米結構陣列,用於製作燃料電池電極。研究顯示當試片表面積越大時,電極的催化反應效果越佳。本研究利用1.5 V與1.75 V之兩階段蝕刻,可製作出的表面積約為14.2 cm2的奈米柱,約為平板電極的50.2倍。當奈米柱體表面沉積1000 Å的白金時,可產生10.2 mA的催化反應電流,為平板電極的72.9倍。
Abstract
With the raise of nanotechnology researching, many special physical and chemical properties were found gradually in nanoscale. Among them, the one-dimension nanostructure owns high specific surface area and excellent electron emission properties. Moreover, the two-dimension arrayed nanostructure has the characteristics of photonic crystal and moth-eye effect. Currently, advanced lithographic methods such as electron beam (E-beam) or deep ultraviolet (DUV) lithography and X-ray lithography are adopted to define periodic nanoscale patterns. But these lithographic equipment are too expensive. Moreover, costly etching methods such as inductively coupled plasma reactive ion etching (ICP-RIE) or electron cyclotron resonance reactive ion etching (ECR-RIE) must be used to form arrayed silicon nanostructure with high aspect ratios. The nanoscale array patterns can be defined on the surface of the silicon wafer by the self-assembly of a polystyrene nanosphere. The photo-assisted electrochemical etching (PAECE) has the advantage of forming nanopore, and the aspect ratio of etched nanopores can be as high as 50:1 which is better than ICP-RIE. Therefore, PAECE is very suitable to fabricate nanostructure. This high-cost drawback makes most of academias and small/medium enterprises hard to invest in nanotechnology. This study combines the self-assembly nanosphere lithography (SANSL) process and photo-assisted electrochemical etching to fabricate a nanostructure array with a high aspect ratio on the surface of a silicon wafer.
Experimental results show that the nanosphere array with a nearly perfect arrangement can be obtained in the sample of 1.8 ∗1.8 cm2 by spin coating and vibration coating. Using reactive ion etching (RIE) can transfer the nanosphere array pattern to the silicon nitride layer, and form the etching window of PAECE. The concentration of the HF electrolyte used in PAECE was 2.5 wt%. When PAECE was performed with etching mask can produce deeper and periodic nanopores. The surfactant of SDSS added in the HF electrolyte of PAECE can reduce the contact angle of electrolyte and avoid the phenomenon of hole-reaming. When the voltage of 1 V is used to etch for 12.5 min, the etching depth of the nanopore array structure is about 5.69 μm and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 63:1. If the etching voltage was increased, the width of pore will be increased and the depth of pore will be reduced gradually at the same time. When the etching voltage of 2 V is applied to etch for 5 min, the etching height of the nanopillar is about 2 μm and its diameter is about 100 nm, such that the aspect ratio of the pillar can reach about 20:1. The nanopillar was arranged periodically according to the definition of nanosphere, therefore the arrayed nanopillar can be realized successfully.
Dropping the solution which has biological samples into the gap of nanopillar, it will affect the light which goes through the nanostructure and produce specific parameters of polarization. The results showed that when the DI water was dropped into the nanopillar structure, the degree of polarization (DOP) is 0.981, azimuth is 4.86° and ellipticity is 2.83°. When the solution which has alkaline lysis plasmid of 5 μg/ml was dropped into the nanopillar structure, the DOP is 0.957, azimuth is 7.7° and ellipticity is 3.99°. The result shows that the change of polarization parameter has the relations with the concentration of biological samples in solution. Therefore, the measure system can be combined with nanopillar array to develop the photonic crystal biosensor. This study also applies the developed nanopore nanostructure array to fabricate sub-wavelength antireflection structure of solar cell. Experimental results show that the deeper in structure and then the better in antireflective effect. After performing 1 V PAECE for 5 min, the weighted mean reflectance can be reduced to 1.73% under the wavelength range of 280–890 nm. Further coating of a silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878 %. Finally, this study also uses various voltage of PAECE to produce nanostructure array with different surface area for the electrode fabrication of fuel cell. Experimental results show that the larger in surface area of sample and then the better in catalysis effect. Two-staged PAECE of 1.5 V and 1.75 V can yield nanopillar with surface area of 14.2 cm2 , which is about 50.2 times higher than a planar electrode. When the surface of such a nanopillar array is coated with platinum of 1000 Å, the reaction current of nanopillar array is 10.2 mA, which is 72.9 times higher than that obtained by only a planar electrode.
目次 Table of Contents
總目錄 I
圖目錄 V
表目錄 XII
摘要 XIII

第一章 緒論
1.1 前言 1
1.2 微機電系統簡介 2
1.3 奈米科技簡介 4
1.3.1 奈米科技之市場前景 5
1.3.2 奈米結構的應用 7
1.4 文獻回顧 12
1.4.1奈米結構陣列製作技術 12
1.4.1.1 微影蝕刻法 12
1.4.1.2 奈米顆粒微影蝕刻法 14
1.4.1.3 氣液固法 16
1.4.1.4 模板成形法 17
1.4.2 奈米級微影技術 21
1.4.2.1 由上而下微影法 21
1.4.2.2 由下而上微影法 23
1.4.3 矽基高深寬比蝕刻技術 27
1.4.3.1 感應耦合電漿反應性離子蝕刻術 27
1.4.3.2 光輔助電化學蝕刻術 28
1.5 本論文之研究動機與架構 32
第二章 奈米結構陣列製作
2.1 前言 35
2.2 多孔矽的形成模型 37
2.2.1 Beale模型 37
2.2.2 Zhang模型 39
2.2.3 擴散機制模型 40
2.3實驗程序與實驗設備 44
2.3.1 實驗條件與方法 44
2.3.2 史托克(Stokes)參數與邦加球(Poincarè sphere) 47
2.3.3 實驗設備 50
2.3.4 實驗程序 53
2.4 實驗結果與討論 60
2.4.1 奈米球微影製程 60
2.4.2 光輔助電化學蝕刻製程 69
2.4.2.1 界面活性劑的影響 69
2.4.2.2有無蝕刻幕罩的蝕刻效果比較 76
2.4.2.3 蝕刻時間與蝕刻速率的關係 80
2.4.2.4 蝕刻電壓與蝕刻速率的關係 84
2.4.3 光子晶體之極化光檢測程序 92
2.5 結論與討論 96
第三章 奈米孔洞陣列應用於次波長抗反射結構製作
3.1 前言 98
3.2 文獻回顧 103
3.2.1太陽能電池抗反射結構 103
3.2.2次波長結構之探討 105
3.3實驗程序與實驗設備 107
3.3.1 實驗條件與方法 107
3.3.2 抗反射膜最佳厚度計算 108
3.3.3 加權平均抗反射率計算 109
3.3.4 實驗設備 113
3.3.5 實驗程序 113
3.4 實驗結果與討論 115
3.4.1 結構深度對反射率之影響 115
2.4.2 抗反射膜對反射率之影響 118
3.5 結論 124
第四章 奈米結構陣列應用於燃料電池電極板製作
4.1 前言 126
4.2 文獻回顧 130
4.3實驗程序與實驗設備 132
4.3.1 實驗條件與方法 132
4.3.2 實驗程序 132
4.3.3 實驗設備 133
4.4 實驗結果與討論 136
4.4.1 不同奈米陣列結構對催化的影響 136
4.4.2 觸媒厚度對催化反應之影響 142
4.5 結論 148
第五章 總結與未來展望
5.1 總結 149
5.2 未來展望 151
參考文獻 153
參考文獻 References
1.楊啟榮 等人, “微機電系統技術與應用”, 精密儀器發展中心, 第四章, pp. 142 (2003).
2.楊啟榮, "微機電系統技術導論", 國立台灣師範大學上課講義 (2001).
3.林學恆, "奈米市場全球發燒", 經濟日報, 8月7日 (2003).
4.石川正道, "奈米科技與產業導論", 普林斯頓國際有限公司, pp. 154-159 (2004).
5.成功大學APCOT國際研討會報導.
6.ROCNS, "Nanotechnology Market Forecast to 2013" (2008).
7.成章瑜, "新科學創造台灣競爭力", 遠見雜誌, 11月號, pp. 81-84 (2002).
8.奈米國家型科技計劃內容.
9.J. W. Du, "New additive to enhance surface cleanability", BYK-Chemie (2003).
10.D. Chenl, "Anti-reflection(AR) coating made by sol-gel process: A review", Solar Energy Materials & Solar Cells, Vol. 68, pp. 313–336 (2001).
11.A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, A. M. Hawryluk, "Use of interference lithography to pattern arrays of submicron resiststructures for field emission flat panel displays", Journal of Vacuum Science and Technology B, Vol. 15, pp. 729-735 (1997).
12.K. Hadobas, S. Kirsch, A. Carl, M. Acet, E.F. Wassermann, Reflection properties of nanostructure-arrayed silicon surfaces, Nanotechnology, Vol. 11, pp. 161-164 (2000).
13.N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba, "Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field", Analytical Chemistry, Vol. 76, pp. 15-22 (2004).
14.S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, C. H. Cheng, "Parameter optimization for an ICP deep silicon etching system", Microsystem Technologies, Vol. 13, pp. 465-474 (2007)
15.Y. C. Kim, S. S. Lee, "Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask ", Journal of Micromechanics and Microengineering, Vol. 18, 015006 (2008).
16.S. Bolhuis, J. A. V. Kan, F. Watt, "Enhancement of proton beam writing in PMMA through optimization of the development procedure", Nuclear Instruments and Methods in Physics Research B, in press (2009).
17.Y. K. Hong, J. H. Bahng, G. Lee, H. Kim, W. Kim, S. Lee, J. Y. Koo, J. I. Park, W. R. Lee, J. Cheon, "Facile fabrication of 2-dimensional arrays of sub-10 nm single crystalline Si nanopillars using nanoparticle masks", Chemical Communications, vol. 21, pp. 3024-3035 (2003).
18.W. L. Min, B. Jiang, P. Jiang, "Bioinspired self-cleaning antireflection coatings", Advanced Materials, Vol. 20, pp. 3914-3918 (2008).
19.C. W. Kuo, K. H. Wei, C. H. Lin, J. Y. Shiu, P. Chen, "Nanofluidic system for the studies of single DNA molecules", Electrophoresis, Vol. 29, pp. 2931-2938 (2008).
20.M. Jaffe, "High performance synthetic fibers for composites", Repot of the Committee on Engineering and Technical Systems, pp. 89 (1992).
21.J. L. Taraci, J. W. Dailey, T. Clement, D. J. Smith, J. Drucker, S. T. Picraux, "Nanopillar growth mode by vapor-liquid-solid epitaxy", Applied Physics Letters, Vol. 84, pp. 5302-5304 (2004).
22.A. I. Hochbaum, R. Fan, R. He, P. Yang, "Controlled growth of si nanowire arrays for device integration", Nano Letters, Vol. 5, pp. 457-460 (2005).
23.P. G. Li, X. Wang , W. H. Tang, "Facile route to well-aligned ZnO nanowire arrays", Materials Letters, Vol. 63, pp. 718-720 (2009).
24.S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers", Applied Physics Letters, Vol. 67, pp. 3114-3116 (1995).
25.Y. Kanamoria, K. Hane, H. Sai, H. Yugami, "100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask", Applied Physics Letters, Vol. 78, pp. 142-143 (2001).
26.J. Liang, H. Chik, J. Xu, "Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications", Selected Topics in Quantum Electronics, Vol. 8, pp. 998-1008 (2002).
27.C. W. Guo, L. Feng, J. Zhai, G. Wang, Y. Song, L. Jiang, D. Zhu, "Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer", ChemPhysChem, Vol. 5, pp. 750-753 (2004).
28.Y. Zhang, J. Lu, H. Zhou, T. Itoh, R. Maeda, "Application of nanoimprint technology in MEMS-based micro direct-methanol fuel cell (μ-DMFC)", Journal of Microelectromechanical Systems, Vol. 17, pp. 1020-1028 (2008).
29.K. J Morton, G. Nieberg, S. Bai, S. Y Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching", Nanotechnology, Vol. 19, 345301 (2008).
30.P. Silverman, "Manufacturing with EUV", (2000).
31.T. Brunner, "Pushing the limits of lithography for IC production", Electron Devices Meeting, 1.2.1-1.2.5 (1997).
32.L. R. Harriott, "Limits of lithography", proceedings of the IEEE, Vol. 89, pp. 366-374 (2001).
33.S. Tedesco, "Next generation lithography: the challenges of nano lithography", Minatec Innovative centre (2003).
34.T. Matsuo, M. Endo, S. Kishimulra, A. Misaka, M. Sasago, "Lithography solution for 65-nm node system LSIs", 2002 VLSl Technology Digest of Technical Papers, pp. 196-197 (2002).
35.A. R. Reinberg, "Etching and lithography running neck and neck", Circuits and Devices Magazine, Vol. 9, pp. 24-29 (1993).
36.R. B. Bosch Gmbh, U.S. patents No.4855017, U.S. patents No.4784720, and Germany Patent No. 4241045C1 (1994).
37.M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process", Sensors and Actuators A, Vol. 74, pp. 13-17 (1999).
38.鍾震桂, "感應耦合電漿的矽非均性蝕刻技術", 第三屆奈米工程暨微系統技術研討會, Vol. 3, pp. 83-87 (1999).
39.J. K. Bhardwaj and H. Ashraf, "Advanced silicon etching using high density plasmas", SPIE, Vol. 2639, pp. 224-233 (1995).
40.楊啟榮, 強玲英, 郭文凱, 林郁欣, 林暉雄, 張哲瑋, 趙俊傑,"微系統類LIGA製程光刻技術", 科儀新知, Vol. 22, pp. 33-45 (2001).
41.A. Uhir, "Electrolytic shapping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-341 (1956).
42.Y. Watanabe, Y. Arita, T. Yokoyama, Y. Igarashi, "Formation and properties of porous silicon and its application", Journal of the Electrochemical society, Vol. 122, pp. 1351-1358 (1975).
43.R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71 pp. R1-R22 (1992).
44.V. Lehmann, U. Gosele, "Porous silicon formation a quantum wire effect", Applied Physics Letter, Vol. 58, pp. 856-858 (1991).
45.A. Richter, P. Steiner, F. Kozlowski, W. Lang, "Current-induced light emission from a porous silicon device", IEEE electron device letter, Vol. 12, pp. 691-692 (1991).
46.S.E. Létant, T.W. van Buuren, L.J. Terminello, Nanochannel arrays on silicon platforms by electrochemistry, Nano Letters, Vol. 4, pp. 1705-1707 (2004).
47.K. Grigoras, A.J. Niskanen, S. Franssila, Plasma etched initial pits for electrochemically etched macroporous silicon structures, Journal of Micromechanics and Microengineering, Vol. 11, pp. 371-375 (2001).
48.M. D. B. Charlton, H. W. Lau, G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", Microengineering Applications in Optoelectronics, pp. 1-9 (1996).
49.M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73, pp. 622-636 (1985).
50.M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46, pp. 86-88 (1985).
51.X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136, pp. 1561-1565 (1989).
52.X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138, pp. 3750-3756 (1991).
53.R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17, pp. 533-541 (1988).
54.V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched tranches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653-658 (1990).
55.J. Linnros, X. Badel, P. Kleimann, "Macro pore and pillar array formation in silicon by electrochemical etching", Physica Scripta, Vol. T126, pp. 72-76 (2006).
56.J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne, "Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays", The Journal of Physical Chemistry B, vol. 103, pp. 3854-3863 (1999).
57.P. Kleimann, J. Linnros, S. Petersson, "Formation of wide and deep pores in silicon by electrochemical etching", Materials Science and Engineering B, Vol. 69-70, pp. 29-33 (2000).
58.P. Kleimann, X. Badel, J. Linnros, "Toward the formation of three dimensional nanostructures by electrochemical etching of silicon ", Applied Physics Letters, Vol. 86, 183108 (2005).
59.H. W. Lau , G. J. Parker , R. Greef, "High aspect ratio silicon pillars fabricated by electrochemical etching and oxidation of macroporous silicon", Thin Solid Films, Vol. 276, pp. 29-31 (1996).
60."Material safety data sheet", Polysciences Inc, pp. 1-3(2007).
61.S. Maenosono, C. D. Dushkin, Y. Yamaguchi, K. Nagayama, Y. Tsuji, "Effect of growth conditions on the structure of two-dimensional latex crystals: experiment", Colloid and Polymer Science, Vol. 277, pp. 914-930 (1999).
62.S. Maenosono, C. D. Dushkin, Y. Yamaguchi, K. Nagayama, Y. Tsuji, "Effect of growth conditions on the structure of two-dimensional latex crystals: modeling", Colloid and Polymer Science, Vol. 277, pp. 1152-1161 (1999).
63.W. Kandulski, "Shadow Nanosphere Lithography", Ph.D. Thesis, University of Bonn, pp. 14 (2007).
64.C. S. Solanki, R. R. Bilyalov, J. Poortmans, J. P. Celis, J. Niji, and R. Mertens, “Self-standing porous silicon films by one-step anodizing”, Journal of the Electrochemical Society, Vol. 151, pp.307-314 (2004).
65.K. R. Williams, R. S. Muller, "Etch rates for micromachining processing", Journal of Microelectromechanical Systems, Vol. 5, pp. 256-269 (1996).
66.M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 33)", Progress in Photovoltaics: Research and Applications, Vol. 17, pp. 85-94 (2009).
67.M. Schnell, R. Ludemann, S. Schaefer, "Plasma surface texturization for multicrystalline silicon solarcells", Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE, pp. 367-370 (2000).
68.V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, "Cost-effective methods of texturing for silicon solar cells", Solar Energy Materials and Solar Cells, Vol. 72, pp. 291-298 (2002).
69.J. M. Kim, Y. K. Kim, "The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process", Solar Energy Materials and Solar Cells, Vol. 81, pp. 239-247 (2004).
70.E. Manea, E. Budianu, M. Purica, I. Cernica, F. Babarada, "Technological process for a new silicon solar cell structure with honeycomb textured front surface", Solar Energy Materials and Solar Cells, Vol. 90, pp. 2312-2318 (2006).
71.B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating", Solar Energy Material and Solar Cells, Vol. 91, pp. 701-706 (2007).
72.C. G. Bernhard, "Structural and functional adaptation in a visual system", Endeavor, Vol. 26, pp. 79-84 (1967).
73.P. B. Clapham, and M. C. Hutley, "Reduction of lens reflection by moth eye principle", Nature, Vol. 244, pp. 281-282 (1973).
74.陳永彬, 李昭德, 張哲豪, 王倫, "以干涉微影方式製作光學抗反射結構之應用研究", 機械工業雜誌, Vol. 294, pp. 27-35 (2007)
75.T. K. Gaylord, E. N. Glytsis, M. G. Moharam, "Zero-reflectivity homogeneous layers and high spatial frequency surface-relief gratings on lossy materials "Applied Optics, Vol. 26, pp. 3123-3135 (1987).
76.E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures “Journal of the Optical Society of America A, Vol. 26, pp. 333-339 (1995).
77.M. G.. Moharam, T. K.Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America A, Vol. 71, pp.811-818 (1981).
78.M. G.. Moharam, T. K.Gaylord, "Diffraction analysis of dielectric surface-relief gratings," Journal of the Optical Society of America A, Vol. 72, pp.1385-1392 (1982).
79.T. K. Gaylord, W. E. Baird, M. G. Moharam, "Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings," Applied optics, Vol. 25, pp.4562-4567 (1986).
80.C. Honsberg, S. Bowden, "Photovoltaics CDROM".
81.E. Hecht, "Optics", fourth edition, Addison Wesley (2003).
82.F. L. Pedrotti, L. M. Pedrotti, L. S. Pedrotti, "Introduction to Optics", third edition, Hardcover (2007).
83.J. Morgan, "Introduction to Geometrical and Physical Optics", Krieger Publishing Company (1978).
84.賴秋助, 顏宇欣, "微小型直接甲醇燃料電池系統設計", 工業材料雜誌, Vol. 193, pp. 120-125 (2003).
85.賴昶均, "多孔矽應用於微型直接甲醇燃料電池之擴散層暨觸媒載體之研製", 國立台灣師範大學機電科技學系, 碩士論文 (2008).
86.W. Y. Sim, G. Y. Kim, and S. S. Yang, "Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (DMFC) for the medical application", Proceeding of the 14th IEEE International Conference on Micro Electro Mechanical Systems, pp. 341-344 (2001).
87.高志勇, 陳耿陽, 吳富其, 黃秋萍, "直接甲醇燃料電池製程技術發展現況", 工業材料雜誌, Vol. 193, pp. 111-119 (2003).
88.Y. H. Seo, Y. H. Cho, "A miniature direct methanol fuel cell using platinum sputtered microcolumn electrodes with limited amount of fuel", Proceeding of the 16th IEEE International Conference on Micro Electro Mechanical Systems, pp. 375-378 (2003)
89.Z. Xiao, G. Yan, C. Feng, P. C H Chan, I. M. Hsing, "A silicon-based fuel cell micro power system using a microfabrication technique", Journal of Micromechanics and Microengineering, Vol. 16, pp. 2014-2020 (2006).
90.Y. Zhang, J. Lu, H. Zhou, T. Itoh, R. Maeda, "Application of nanoimprint technology in MEMS-based micro direct-methanol fuel cell (μ-DMFC)", Journal of Microelectromechanical Systems, Vol. 17, pp. 1020-1028 (2008).
91.W. Lang, "Silicon microstructuring technology", Materials Science and Engineering, Vol. 17, pp. 1-55 (1996).
92.M. Kruger, R. Arens-Fischer, M. Thonissen, H. Munder, M. G. Berger, H. Luth, S. Hilbrich, W. Theiss, "Formation of porous silicon on patterned substrates", Thin Solid Films, Vol. 276, pp. 257-260 (1996).
93.S. A. Lee, K. W. Park, B. K. Kwon, Y. E. Sung, "PtRu nanoparticle electrocatalysts prepared by various synthetic methods for use in direct methanol fuel cells" Journal of Industrial and Engineering Chemistry, Vol.9, pp. 63-70 (2003).
94.Y. Ishikawa, M. S. Liao, C. R. Cabrera, "Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study", Surface Science, Vol. 463, pp. 66-80 (2000).
95.X .Cui, Q. Zhao, Z. Li, Z. Sun, Z. Jiang, "Cyclic voltammetry as a tool to estimate the effective pore density of an anodic aluminium oxide template" Nanotechnology, Vol. 18, pp. 215701 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.218.215
論文開放下載的時間是 校外不公開

Your IP address is 3.137.218.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code