Responsive image
博碩士論文 etd-0827110-182900 詳細資訊
Title page for etd-0827110-182900
論文名稱
Title
CDK1/Cdc2 調控肝癌衍生生長因子(HDGF)之蛋白質穩定度
The Stability of Hepatoma-Derived Growth Factor (HDGF) is Regulated by CDK1/Cdc2
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-10
繳交日期
Date of Submission
2010-08-27
關鍵字
Keywords
肝癌衍生誘導生長因子
HDGF
統計
Statistics
本論文已被瀏覽 5687 次,被下載 0
The thesis/dissertation has been browsed 5687 times, has been downloaded 0 times.
中文摘要
肝癌衍生誘導生長因子(hepatoma-derived growth factor; HDGF),為近年來發現的生長因子,由人類肝癌細胞株 Huh-7的培養液中所純化出,日前已有許多研究指出: HDGF的過度表現與許多的癌症患者的癒後相關連,其中也包括了黑色素癌。HDGF由240個胺基酸所組成,包含兩個核定位訊息序列(NLS),至今HDGF在細胞週期中的分佈以及功能大多未明瞭,將細胞同步化後,發現HDGF在進入細胞週期的S期前表現最高並隨著細胞週期的進行降低表現直到細胞進行有絲分裂,相對地,CDK1-CycB激酶的活性隨之上升,利用生物體外激脢活性試驗 (in vitro kinase assay),證實了CDK1會磷酸化位於第二個核定位訊息序列上的Ser165,然而,將165位上的Ser進行點突變並不影響HDGF的進核能力,此外,利用cyclohexmide進行蛋白質穩定度實驗發現CDK1的磷酸化會影響HDGF的穩定度,且經由UPS (ubiquitin-proteasome system)將HDGF降解, 功能性研究上Ser165的突變改變了HDGF促細胞生長及移動能力,總結的說Ser165這個胺基酸的磷酸化對於蛋白質穩定度、刺激細胞生長及移動能力是很重要的。
Abstract
Hepatoma-derived growth factor (HDGF) is a novel growth factor originally purified from media conditioned with the human hepatoma cell line HuH-7 Established studies have indicated: HDGF overexpression is related to poor prognosis in various types of cancer including melanoma. HDGF is composed of 240 amino acids and contains two bipartite nuclear location signals (NLSs). To date, the cell cycle distribution and function of HDGF remains largely uncharacterized. By arresting at various cell cycle stages, it was shown that the cellular HDGF level was highest in G1/S phase and lowest in M phase, which was inversely correlated with that of CDK1-CycB kinase. By using in vitro kinase assays, it was found that HDGF is phosphorylated by CDK1, but not glycogen synthase kinase 3b (GSK3b). Bioinformatic search predicted that Ser165 is the putative CDK1 phosphorylation site. Site-directed mutagenesis analysis found that Ser165Ala HDGF mutant was not phosphorylated by CDK1, suggesting Ser165 is indeed the phosphorylation site of CDK1. However, Ser165 mutation had no influence on nuclear targeting of HDGF. In protein stability assay using cyclohexamide, it was found that Ser165Ala mutant HDGF was more stable than the wild type (WT) HDGF. In addition, the HDGF phosphorylation by CDK1 in mitosis resulted in the ubiquitination and degradation of HDGF. Finally, Ser165Ala mutant HDGF was less potent than the WT HDGF in stimulating cell proliferation and migration. Together, these results indicate that CDK1 regulate the stability and function of HDGF.
目次 Table of Contents
Abstract in Chinese 04
Abstract in English 05
Abbreviations 06
Introduction 07
Specific Aims 13
Materials and Methods 15
Results 23
Discussion 28
Table 31
Figures 32
Appendix 47
References 53
參考文獻 References
1. Aaronson, S.A. Growth factors and cancer. Science (New York, N.Y 254, 1146-1153 (1991).
2. McNamara, D.A., Harmey, J.H., Walsh, T.N., Redmond, H.P. & Bouchier-Hayes, D.J. Significance of angiogenesis in cancer therapy. The British journal of surgery 85, 1044-1055 (1998).
3. Jemal, A., Devesa, S.S., Hartge, P. & Tucker, M.A. Recent trends in cutaneous melanoma incidence among whites in the United States. Journal of the National Cancer Institute 93, 678-683 (2001).
4. Shoo, B.A. & Kashani-Sabet, M. Melanoma arising in African-, Asian-, Latino- and Native-American populations. Semin Cutan Med Surg 28, 96-102 (2009).
5. Soballe, P.W. & Herlyn, M. Cellular pathways leading to melanoma differentiation: therapeutic implications. Melanoma research 4, 213-223 (1994).
6. Bernard, K., et al. Functional proteomic analysis of melanoma progression. Cancer research 63, 6716-6725 (2003).
7. Nakamura, H., et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-25149 (1994).
8. Nakamura, H., et al. Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta 183, 273-284 (1989).
9. Everett, A.D., Stoops, T. & McNamara, C.A. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 276, 37564-37568 (2001).
10. Kishima, Y., et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. The Journal of biological chemistry 277, 10315-10322 (2002).
11. Klagsbrun, M., Sasse, J., Sullivan, R. & Smith, J.A. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America 83, 2448-2452 (1986).
12. Enomoto, H., et al. Hepatoma-derived growth factor is induced in liver regeneration. Hepatol Res 39, 988-997 (2009).
13. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32 (1997).
14. Kuroda, T., Tanaka, H., Nakamura, H., Nishimune, Y. & Kishimoto, T. Hepatoma-derived growth factor-related protein (HRP)-1 gene in spermatogenesis in mice. Biochem Biophys Res Commun 262, 433-437 (1999).
15. Ikegame, K., et al. A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266, 81-87 (1999).
16. Everett, A.D., Lobe, D.R., Matsumura, M.E., Nakamura, H. & McNamara, C.A. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. The Journal of clinical investigation 105, 567-575 (2000).
17. Okuda, Y., et al. Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci 94, 1034-1041 (2003).
18. Zhang, J., et al. Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23 (2006).
19. Yamamoto, S., et al. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 14, 2141-2149 (2007).
20. Kishima, Y., et al. Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepato-gastroenterology 49, 1639-1644 (2002).
21. Shu, H., Chen, S., Bi, Q., Mumby, M. & Brekken, D.L. Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol Cell Proteomics 3, 279-286 (2004).
22. Dephoure, N., et al. A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 105, 10762-10767 (2008).
23. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annual review of cell and developmental biology 13, 261-291 (1997).
24. Rao, P.N. & Johnson, R.T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159-164 (1970).
25. Lohka, M.J., Hayes, M.K. & Maller, J.L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proceedings of the National Academy of Sciences of the United States of America 85, 3009-3013 (1988).
26. Errico, A., Deshmukh, K., Tanaka, Y., Pozniakovsky, A. & Hunt, T. Identification of substrates for cyclin dependent kinases. Advances in enzyme regulation 50, 375-399 (2009).
27. Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nature reviews 2, 21-32 (2001).
28. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development 13, 1501-1512 (1999).
29. Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proceedings of the National Academy of Sciences of the United States of America 104, 1488-1493 (2007).
30. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J. & Gygi, S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature biotechnology 24, 1285-1292 (2006).
31. Olsen, J.V., et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648 (2006).
32. Rock, K.L., et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761-771 (1994).
33. Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P. & Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science (New York, N.Y 322, 1104-1107 (2008).
34. Reed, S.I. The ubiquitin-proteasome pathway in cell cycle control. Results Probl Cell Differ 42, 147-181 (2006).
35. Chen, Z.J. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7, 758-765 (2005).
36. Kostova, Z., Tsai, Y.C. & Weissman, A.M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 18, 770-779 (2007).
37. Vembar, S.S. & Brodsky, J.L. One step at a time: endoplasmic reticulum-associated degradation. Nature reviews 9, 944-957 (2008).
38. Huen, M.S. & Chen, J. The DNA damage response pathways: at the crossroad of protein modifications. Cell Res 18, 8-16 (2008).
39. Kodadek, T., Sikder, D. & Nalley, K. Keeping transcriptional activators under control. Cell 127, 261-264 (2006).
40. Wang, J. & Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3, 255-261 (2006).
41. Lin, A.E. & Mak, T.W. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr Opin Immunol 19, 665-673 (2007).
42. Hoeller, D., Hecker, C.M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6, 776-788 (2006).
43. Oliver, J.A. & Al-Awqati, Q. An endothelial growth factor involved in rat renal development. The Journal of clinical investigation 102, 1208-1219 (1998).
44. Enomoto, H., et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-1527 (2002).
45. Abouzied, M.M., et al. Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 378, 169-176 (2004).
46. Imamura, T., et al. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science (New York, N.Y 249, 1567-1570 (1990).
47. Kimura, H. Schwannoma-derived growth factor must be transported into the nucleus to exert its mitogenic activity. Proceedings of the National Academy of Sciences of the United States of America 90, 2165-2169 (1993).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.106.241
論文開放下載的時間是 校外不公開

Your IP address is 18.220.106.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code