Responsive image
博碩士論文 etd-0827112-010326 詳細資訊
Title page for etd-0827112-010326
論文名稱
Title
中空螺旋管材熱間擠製之研究
Study of Hot Extrusion of Hollow Helical Tubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
熱間擠製、鎂合金、中空螺旋管材、有限元素解析
Hot extrusion, Magnesium alloy, Hollow helical tubes, Finite element analysis
統計
Statistics
本論文已被瀏覽 5681 次,被下載 1945
The thesis/dissertation has been browsed 5681 times, has been downloaded 1945 times.
中文摘要
本研究使用單動式與複動式擠型機進行鎂合金中空管材解析與實驗之研究。第一部分為使用單動式擠型機進行中空螺旋管材之解析與實驗。首先提出一設計準則以決定影響擠製結果之加工參數,探討產品尺寸、擠製比及擠錠長對心軸表面應力之影響。接著探討模具軸承部長度、旋轉角度、擠製速度、初始溫度及瓣數對產品充填率之影響。挑選最佳參數進行擠製實驗以獲得健全產品,並進行產品橫斷面處之金相觀察及硬度試驗。由產品尺寸及擠製荷重大小之解析值與實驗值作比較,驗證解析模式之可行性。第二部份為使用複動式擠型機進行中空圓管材解析與實驗,探討擠製比、擠錠長及心軸直徑對心軸之拉力影響及心軸不斷裂之臨界條件。
Abstract
This study investigates analytically and experimentally extrusion processes of magnesium hollow tubes by a single-cylinder extrusion machine and double-cylinder extrusion machine. The first part of this study is to conduct analysis and experiment of hollow helical tube extrusion by single-cylinder extrusion machine. Firstly, a design criterion is proposed to determine the forming parameters and discuss the effects of product size, extrusion ratio, billet length, etc. on the mandrel surface stress. The effects of the die bearing part length, angle of rotation, extrusion speed, initial temperature, petal number, etc. on the radial filling ratio are also investigated. Better parameters are chosen from analytical results to conduct hot extrusion experiments for obtaining sound products. Microstructure observation and hardness test are conducted at the cross-section of the product. The experimental values of extrusion load and product’s dimensions are compared with the analytical values to verify the validity of the analytical models. The second part of this study is to conduct analysis and experiment of hollow tubes extrusion by a double-cylinder extrusion machine. The effects of extrusion ratio, billet length, mandrel diameter, etc. on the drawing force on the mandrel and critical conditions without mandrel fracture are discussed.
目次 Table of Contents
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xi
符號表 xi
第一章 緒論 1
1-1 前言 1
1-2 鎂合金特性及變形基本定義 2
1-2-1 鎂合金之特性 2
1-2-2 鎂合金變形之基本定義 2
1-3 擠製加工製程之簡介 3
1-3-1 直接擠製法 3
1-3-2 間接擠製法 4
1-3-3 擠型機台介紹 5
1-4 鎂合金擠製加工技術之影響參數 6
1-5 文獻回顧 7
1-5-1 擠製製程參數及模具設計對成形結果之影響 7
1-5-2 擠製製程參數對產品機械性質及金相組織之影響 8
1-6 研究動機與論文架構 9
第二章 中空螺旋管材擠製之有限元素分析 11
2-1 中空螺旋管材之參數與擠製模型建立 11
2-1-1 有限元素分析軟體DEFORM-3D簡介 11
2-1-2 中空螺旋管材之幾何尺寸與擠製模型建立 12
2-2 中空螺旋管材之尺寸參數對成形結果之影響 15
2-2-1 改變入口尺寸對擠製荷重與心軸表面應力之影響 17
2-2-2 心軸表面應力分佈與擠製行程之關係 20
2-3 中空螺旋管材之心軸表面應力探討 23
2-3-1 擠製比對心軸表面應力之影響 23
2-3-2 擠錠長對心軸表面應力之影響 29
2-3-3 綜合結果與討論 33
2-4 中空螺旋管材之充填率探討 34
2-4-1 中空螺旋管材之模擬參數設定 35
2-4-2 中空螺旋管材之徑向充填率 35
2-4-3 模具軸承部長度之充填率探討 36
2-4-4 旋轉角度對產品充填率之影響 37
2-4-5 擠製速度對產品充填率之影響 37
2-4-6 初始溫度對產品充填率之影響 38
2-4-7 不同瓣數對產品充填率之影響 39
2-4-8 綜合結果討論 39
第三章 擠製加工實驗與分析 41
3-1 鎂合金熱間擠製實驗 41
3-1-1 鎂合金之成份 41
3-1-2 擠製機台簡介 42
3-1-3 擠製實驗步驟簡介 46
3-1-4 模具之設計與製作 47
3-1-5 擠製實驗參數之設定 51
3-2 解析值與實驗值之比較 52
3-2-1 擠製荷重 52
3-2-2 成品外觀 53
3-2-3 充填率之探討 54
3-2-4 偏心量之探討 54
3-3 金相觀察與硬度試驗之分析 55
3-3-1 金相觀察之規劃 55
3-3-2 金相觀察 56
3-3-3 晶粒量測 64
3-3-4 硬度試驗 68
第四章 複動式擠製之心軸拉力探討 73
4-1 複動式擠型機簡介 73
4-2 中空圓管材擠製之有限元素模組建立 74
4-2-1 中空圓管材之幾何尺寸與擠製模型建立 74
4-2-2 複動式擠型機之心軸介紹與車牙處拉力極限 75
4-2-3 中空圓管材擠製之模擬參數設定 77
4-3 解析結果與討論 78
4-3-1 擠製比對心軸拉力之影響 78
4-3-2 擠錠長度對心軸拉力之影響 79
4-3-3 心軸直徑對心軸拉力之影響 81
4-3-4 綜合結果與討論 82
4-4 複動式擠製加工實驗 84
4-4-1 擠製實驗參數之設定 84
4-4-2 擠製過程心軸斷裂狀況 84
4-4-3 改善心軸斷裂之方法 85
第五章 結論 86
5-1 中空螺旋管材之有限元素分析 86
5-2 中空螺旋管材之擠製實驗 87
5-3 複動式擠製之心軸拉力分析 87
5-4 未來展望 87
參考文獻 88
參考文獻 References
[1] B.L. Mordike, T.Ebert,“Magnesium properties-application-protential”, Materials Science and Enginneering A, Vol.302, 2001, pp.37-45.
[2] 黃正榮,“台灣鎂合金成形產業關鍵成功因素之再探”,碩士論文 國立清華大學,2005。
[3] 蔡木村,“機械冶金”,金華科技圖書股份有限公司,1990。
[4] R. E. Reed-Hill, “Physical Metallurgy Principles”, metallurgy CHP17, 1974, pp.539.
[5] M.R. Barnett, “Twinning and the ductility of magnesium alloys Part I “Tension” twins”, Materials Science and Engineering A, Vol.464, 2007, pp.1-7.
[6] M.R. Barnett, “Twinning and the ductility of magnesium alloys Part II “Contraction twins”, Materials Science and Engineering A, Vol.464, 2007, pp.8-16.
[7] N. Stanford, M.R. Barnett, “Effect of particles on the formation of deformation twin in a magnesium-based alloy”, Materials Science and Engineering A, Vol.516, 2009, pp.226-234.
[8] A. Jager, P. Lukac, V. Gartnerova, J. Haloda, M. Dopita, “Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming”, Materials Science and Engineering A, Vol.432, 2006, pp.20-25.
[9] N. Takatsuji, “Fundamental understandings of Extrusion Process”, Journal of the JSTP Vol.49, No.569, 2008, pp.507-511.
[10] 馨傑工業股份有限公司_董事長葉聰敏http://www.shinjye.com.tw/product.asp
[11] 張文成,”鋁合金加工技術叢書-鋁及鋁合金之應用”,工研院工業材料研究所,中華民國七十四年十二月,pp.1-6.
[12] X. Wu, G. Zhao, Y. Luan, X. Ma, “Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process”, Journal of Materials Science and Engineering, Vol. 435-436, 2006, pp.266-274.
[13] J.H. Song, Y.T. Im, “The applicability of process design system for forward extrusion of spur gear”, Journal of Materials Processing Technology, Vol. 184, 2007, pp.411-419.
[14] J.H. Song, Y.T. Im, “Development of a computer-aided-design system of cold forward extrusion of a spur gear”, Journal of Materials Processing Technology , Vol. 153-154, 2004, pp.821-828.
[15] T. Aida, N. Takatsuji, K. Matsuki, T. Ohara, S. Kamado, “Improvement in surface properties of extrusions from Mg-Al-Zn based alloy machined chips”, Journal of Japan Institute of Light Metals, Vol.55, No.9, 2005, pp.400-404.
[16] H.H. Jo, C.S. Jeong, S.K. Lee, B.M. Kim, “Determination of welding pressure in the non-steady-state porthole die extrusion of improved Al7003 hollow section tubes”, Journal of Materials Processing Technology, Vol. 139, 2003, pp.428-433.
[17] J. Choi, H. Cho, H. Kwon, “A new extrusion process for helical-gears: experimental study”, Journal of Materials Processing Technology Vol. 44, 1944, pp.35-53.
[18] H.M. Zhang, Y.J. Su, G.J. Huang, D. Li, “Research about big grain 6061-T6 aluminum alloy rod center”, Light Alloy Fabrication Technology, Vol.33, No.8, 2005, pp.34-39.
[19] L.L. Chang, Y.N. Wang, X. Zhao, J.C. Huang, “Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion”, Materials Science and Engineering A, Vol.496, 2008, pp.512-516.
[20] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, Journal of Materials Porcessing Technology, Vol. 141, 2003, pp.207-212.
[21] S.H. Hsiang, J.L. Kuo, “An investigation on the hot extrusion process of magnesium alloy sheet”, Journal of Materials Processing Technology, Vol. 140, 2003, pp.6-12.
[22] 涂仕明,”鎂合金管板材熱間擠製之研究(Study on Hot Extrusion Processes of Magnesium Alloy Tubes and sheets)”,碩士論文,國立中山大學機械與機電工程學系,高雄、台灣,2009。
[23] F.K. Chen, T.B. Huang, S.J. Wang, “A study of flow-through phenomenon in the press forging of magnesium-alloy sheets”, Journal of Materials Processing Technology, Vol.187-188, pp.770-774.
[24] http://www.matweb.com/.
[25] 林松秀,”鎂合金齒輪熱間擠製之模具設計(Die Design for Hot Extrusion of Magnesium Alloy Gear)”,碩士論文,國立中山大學機械與機電工程學系,高雄、台灣,2011。
[26] 黃慈慧,”應用熱間擠製加工對於梯度機械性質材料之製作(Magnesium of Gradient Mechanical Properties Materials Using Hot Extrusion Processes)”,碩士論文,國立中山大學機械與機電工程學系,高雄、台灣,2011。
[27] ASTM E112-96(Reapproved 2004)E2, “Standard test methods for determining average grain size”, ASTM information, 2004, pp.13-14.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code