Responsive image
博碩士論文 etd-0827112-111459 詳細資訊
Title page for etd-0827112-111459
論文名稱
Title
多巴胺披覆金奈米粒子於高效能濕度感測器之應用
Dopamine Coated Gold Nanoparticles for High Performance Humidity Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-19
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
親水性、表面改質、金奈米粒子、濕度感測器、多巴胺
gold nanoparticle, dopamine, Humidity sensor, surface modification, hydrophilic
統計
Statistics
本論文已被瀏覽 5744 次,被下載 2591
The thesis/dissertation has been browsed 5744 times, has been downloaded 2591 times.
中文摘要
隨著微機電系統技術的發展,微型化濕度感測器已被廣泛的研究,常被使用的濕度感測材料為陶瓷、聚合物以及固態金屬氧化物。利用這些材料進行濕度感測時,水分子需擴散進入感測薄膜以改變該薄膜的電器特性,當薄膜較厚或接觸表面積受限時,其反應時間會因此變得較長。因此,發展一反應快速且高效能之濕度感測器,可有效提升濕度感測之效能。
本研究開發一種製程簡單且價格便宜的微型濕度感測器,該濕度感測器以金奈米粒子做為感測材料,並藉由一簡單的噴塗製程,使金奈米粒子均勻分佈於感測晶片表面,藉由金奈米粒子的大比表面積,以製作成一高性能濕度感測器。但金奈米粒子表面為疏水性,並不適用於濕度感測應用,所以需要進行表面改質,以增強其吸濕特性。因此,本研究發展一創新製程,利用生物分子多巴胺包覆金奈米粒子,使金奈米粒子具有極佳之親水表面特性,而裸露在表面的氨基與水分子形成鍵結後,產生電子的轉移,改變材料表面阻抗特性為濕度變化的依據。
為了達到此目的,本研究利用共價鍵結方式將不同濃度之多巴胺分子包覆在粒徑大小4-6 nm的金奈米粒子上,以提高感測器之濕度感測能力。量測結果顯示,濃度1 M之多巴胺包覆金奈米粒子有最佳的濕度感測效能,其最大單位濕度的感測值為3283(%/%RH),是尚未經過多巴胺包覆金奈米粒子的1500倍,並且在濕度20-90%RH區間,該濕度感測器具有良好的線性度(R2>0.97)。此外,由於沒有材料內部之擴散機制,該濕度感測器具有快速的吸濕反應時間(5 s)與恢復時間(10 s)。此外,在為期三天分別量測低、中、高等濕度範圍的長時間穩定性量測中,該濕度感測器展現出良好的穩定性。本研究所提出之製程技術,將提供簡單和低成本的方法來生產高性能濕度感測器。
Abstract
This study presents a simple process for producing resistance-based humidity sensors utilizing dopamine (DA) coated gold nano-particles (AuNPs) as the sensing material. The sensing material for typical humidity sensors are solid state metal oxides, graft-polymers or salt-doped polymers. However, these humidity sensors may suffer from low sensing response or slow time response since water molecules have to diffuse into the sensing materials to induce the electrical property changes. Alternatively, AuNPs have large surface area for water molecule absorption and can be potentially for high performance humidity sensing. Nevertheless, the surface property of AuNPs is hydrophobic and needs to be modified. In this regards, this work uses a highly hydrophilic molecule of dopamine to modify the surface of AuNP into hydrophilic to enhance the humidity sensing performance.
Highly hydrophilic bio-molecule of dopamine is physically bonded onto 4-6 nm AuNPs to enhance the humidity sensing performance. Results show that the DA coated AuNPs have nice humidity sensing responses in the measuring range of 20-90%RH. The measured resistance response shows >1500 times greater than the sensor using the same AuNPs without DA coating. The developed humidity sensor shows rapid time responses for water absorption (13 s) and desorption (30 s), respectively. Moreover, a 3-day long-term measurement at low, medium and high humidity ranges also shows the good stability of the developed sensor. The method developed in this study provides a simple and low-cost method to produce high-performance humidity sensors with DA-coated AuNPs.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
符號表 x
簡寫表 xi
第一章 緒論 1
1.1 前言 1
1.2 濕度 2
1.2.1 絕對濕度 3
1.2.2 相對濕度 4
1.2.3 露點 4
1.3 濕度感測器種類與原理 5
1.3.1 電容式濕度感測器 6
1.3.2 電阻式濕度感測器 7
1.3.3 光學式濕度感測器 9
1.3.4 重量式濕度感測器 10
1.3.5 混合式(Hybrid)濕度感測器 12
1.4 論文架構 13
第二章 文獻回顧與動機目的 15
2.1 文獻回顧 15
2.2 研究動機及目的 21
第三章 材料與方法 23
3.1 金奈米粒子的合成 23
3.2 感測器的製作 25
3.2.1 濺鍍金屬薄膜 25
3.2.2 光罩製作 25
3.2.3 晶片製作 26
3.2.4 製作指叉電極晶片 26
3.2.5 感測層製程 28
3.3 濕度量測方法 28
3.4紫外光/可見光吸收光譜( UV/Vis )分析 29
3.5 量測原理 30
第四章 實驗結果與討論 32
4.1 金奈米粒子之光譜分析 32
4.2 多巴胺包覆金奈米粒子之理論數量 33
4.3 金奈米粒子表面修飾的成果 34
4.4 多巴胺濃度對濕度量測影響 36
4.5 不同噴塗層數對於濕度感測之影響 39
4.6 循環濕度感測之電阻量測 40
4.7 量測溫度與不同濕度量測之影響 42
4.8 濕度感測之反應時間與恢復時間 44
4.9 濕度感測之長時間穩定性量測 45
第五章 結論及未來展望 47
5.1 結論 47
5.2 未來展望 49
參考文獻 50
自述 56
參考文獻 References
[1] 交通部中央氣象局, "每月氣象資料," Available:
http://www.cwb.gov.tw/V7/climate/monthlyData/mD.htm.
[2] 台北市衛生局, "氣喘病的避免," Available:
http://www.health.gov.tw/.
[3] 行政院衛生署, "手術環境介紹,"Available:
http://www.ptph.doh.gov.tw/main_sec.php?index=public_se&bsid=discipline&sid=03&page_name=detail&pid=61&iid=95.
[4] 財政部關稅總局, "海關進出口貿易統計, "Available:
http://www.customs.gov.tw/StatisticWeb/IESearch.aspx.
[5] Floricultura, "Relative humidity: an important factor in the growth of Miltonia and Cymbidium," Newsletter, vol. 29, 2011.
[6] Z. Chen and C. Lu, "Humidity sensors: A review of materials and mechanisms," Sensor Letters, vol. 3, pp. 274-295, 2005.
[7] E. Traversa, "Ceramic sensors for humidity detection - the state-of-the-art and future-developments," Sensors and Actuators B-Chemical, vol. 23, pp. 135-156, 1995.
[8] Z. M. Rittersma, "Recent achievements in miniaturised humidity sensors - a review of transduction techniques," Sensors and Actuators A-Physical, vol. 96, pp. 196-210, 002.
[9] K. Rubner, D. Balkose, and E. Robens, "Methods of humidity determination Part I: Hygrometry," Journal of Thermal Analysis and Calorimetry, vol. 94, pp. 669-673, 2008.
[10] M. Matsuguchi, Y. Sadaoka, Y. Nuwa, M. Shinmoto, Y. Sakai, and T. Kuroiwa, "Capacitive-type humidity sensors using polymerized vinyl carboxylate," Journal of the Electrochemical Society, vol. 141, pp. 614-618, 1994.
[11] A. R. K. Ralston, J. A. Tobin, S. S. Bajikar, and D. D. Denton, "Comparative performance of linear, cross-linked, and plasma-deposited pmma capacitive humidity sensors," Sensors and Actuators B-Chemical, vol. 22, pp. 139-147, 1994.
[12] C. H. Lin and C. H. Chen, "Sensitivity enhancement of capacitive-type photoresistor-based humidity sensors using deliquescent salt diffusion method," Sensors and Actuators B-Chemical, vol. 129, pp. 531-537, 2008.
[13] C. H. Chen and C. H. Lin, "A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing," Sensors and Actuators B-Chemical, vol. 135, pp. 276-282, 2008.
[14] R. K. Nahar and V. K. Khanna, "A study of capacitance and resistance characteristics of an Al2O3 humidity Sensor," International Journal of Electronics, vol. 52, pp. 557-567, 1982.
[15] T. Wagner, S. Krotzky, A. Weiss, T. Sauerwald, C. D. Kohl, J. Roggenbuck, and M. Tiemann, "A high temperature capacitive humidity sensor based on mesoporous silica," Sensors, vol. 11, pp. 3135-3144, 2011.
[16] M. Anbia and S. E. M. Fard, "Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method," Journal of Rare Earths, vol. 30, pp. 38-42, 2012.
[17] K. Ogura, H. Shiigi, M. Nakayama, and K. Kuratani, "Characterization of the composite film prepared from chemically synthesized poly(o-phenylenediamine) and poly(vinyl alcohol) and the application to a humidity sensor," Denki Kagaku, vol. 64, pp. 1327-1333, 1996.
[18] K. Ogura, R. C. Patil, H. Shiigi, T. Tonosaki, and M. Nakayama, "Response of protonic acid-doped poly(o-anisidine)/poly(vinyl alcohol) composites to relative humidity and role of dopant anions," Journal of Polymer Science Part A-Polymer Chemistry, vol. 38, pp. 4343-4352, 2000.
[19] M. J. Yang, Y. Li, X. W. Zhan, and M. F. Ling, "A novel resistive-type humidity sensor based on poly(p-diethynylbenzene)," Journal of Applied Polymer Science, vol. 74, pp. 2010-2015, 1999.
[20] J. H. Cho, J. B. Yu, J. S. Kim, S. O. Sohn, D. D. Lee, and J. S. Huh, "Sensing behaviors of polypyrrole sensor under humidity condition," Sensors and Actuators B-Chemical, vol. 108, pp. 389-392, 2005.
[21] M. Parthibavarman, V. Hariharan, and C. Sekar, "High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method," Materials Science & Engineering C-Materials for Biological Applications, vol. 31, pp. 840-844, 2011.
[22] Y. He, T. Zhang, W. Zheng, R. Wang, X. W. Liu, Y. Xia, and J. W. Zhao, "Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning," Sensors and Actuators B-Chemical, vol. 146, pp. 98-102, 2010.
[23] H. T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, T. Y. Tsai, W. Y. Weng, C. L. Hsu, and B. T. Dai, "CuO nanowire-based humidity sensors prepared on glass substrate," Sensors and Actuators B-Chemical, vol. 156, pp. 906-911, 2011.
[24] J. Shah, R. K. Kotnala, B. Singh, and H. Kishan, "Microstructure-dependent humidity sensitivity of porous MgFe2O4-CeO2 ceramic," Sensors and Actuators B-Chemical, vol. 128, pp. 306-311, 2007.
[25] M. Ando, T. Kobayashi, and M. Haruta, "Humidity-sensitive optical absorption of Co3O4 film," Sensors and Actuators B-Chemical, vol. 32, pp. 157-160, 1996.
[26] A. Gaston, F. Perez, and J. Sevilla, "Optical fiber relative-humidity sensor with polyvinyl alcohol film," Applied Optics, vol. 43, pp. 4127-4132, 2004.
[27] M. Bedoya, G. Orellana, and M. C. Moreno-Bondi, "Fluorescent optosensor for humidity measurements in air," Helvetica Chimica Acta, vol. 84, pp. 2628-2639, 2001.
[28] S. Lomperski and J. Dreier, "Dew-point measurements at high water vapour pressure," Measurement Science & Technology, vol. 7, pp. 742-745, 1996.
[29] F. Pascal-Delannoy, B. Sorli, and A. Boyer, "Quartz Crystal Microbalance (QCM) used as humidity sensor," Sensors and Actuators a-Physical, vol. 84, pp. 285-291, 2000.
[30] Y. S. Zhang, K. Yu, R. L. Xu, D. S. Jiang, L. Q. Luo, and Z. Q. Zhu, "Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor," Sensors and Actuators A-Physical, vol. 120, pp. 142-146, 2005.
[31] N. M. Tashtoush, J. D. N. Cheeke, and N. Eddy, "Surface acoustic wave humidity sensor based on a thin PolyXIO film," Sensors and Actuators B-Chemical, vol. 49, pp. 218-225, 1998.
[32] M. Penza and V. I. Anisimkin, "Surface acoustic wave humidity sensor using polyvinyl-alcohol film," Sensors and Actuators A-Physical, vol. 76, pp. 162-166, 1999.
[33] B. Adhikari and S. Majumdar, "Polymers in sensor applications," Progress in Polymer Science, vol. 29, pp. 699-766, Jul 2004.
[34] H. S. Hong and G. S. Chung, "Humidity sensing characteristics of Ga-doped zinc oxide film grown on a polycrystalline AlN thin film based on a surface acoustic wave," Sensors and Actuators B-Chemical, vol. 150, pp. 681-685, 2010.
[35] A. Gluck, W. Halder, G. Lindner, H. Muller, and P. Weindler, "Pvdf-excited resonance sensors for gas-flow and humidity measurements," Sensors and Actuators B-Chemical, vol. 19, pp. 554-557, 1994.
[36] M. Penza and G. Cassano, "Relative humidity sensing by PVA-coated dual resonator SAW oscillator," Sensors and Actuators B-Chemical, vol. 68, pp. 300-306, 2000.
[37] K. Shinbo, S. Otuki, Y. Kanbayashi, Y. Ohdaira, A. Baba, K. Kato, F. Kaneko, and N. Miyadera, "A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance," Thin Solid Films, vol. 518, pp. 629-633, 2009.
[38] N. Mizutani, A. Kitazawa, and M. Kato, "Development of humidity sensor for gas analyzer," Nippon Kagaku Kaishi, pp. 1925-1928, 1974.
[39] R. Nohria, R. K. Khillan, Y. Su, R. Dikshit, Y. Lvov, and K. Varahramyan, "Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly," Sensors and Actuators B-Chemical, vol. 114, pp. 218-222, 2006.
[40] W. Yao, X. J. Chen, and J. Zhang, "A capacitive humidity sensor based on gold-PVA core-shell nanocomposites," Sensors and Actuators B-Chemical, vol. 145, pp. 327-333, 2010.
[41] J. Wang, F. Q. Wu, K. H. Shi, X. H. Wang, and P. P. Sun, "Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin," Sensors and Actuators B-Chemical, vol. 99, pp. 586-591, 2004.
[42] R. P. Tandon, M. R. Tripathy, A. K. Arora, and S. Hotchandani, "Gas and humidity response of iron oxide - Polypyrrole nanocomposites," Sensors and Actuators B-Chemical, vol. 114, pp. 768-773, 2006.
[43] K. Majid, S. Awasthi, and M. L. Singla, "Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material," Sensors and Actuators A-Physical, vol. 135, pp. 113-118, 2007.
[44] S. Jain, S. Chakane, A. B. Samui, V. N. Krishnamurthy, and S. V. Bhoraskar, "Humidity sensing with weak acid-doped polyaniline and its composites," Sensors and Actuators B-Chemical, vol. 96, pp. 124-129, 2003.
[45] M. L. Singla, S. Awasthi, and A. Srivastava, "Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids," Sensors and Actuators B-Chemical, vol. 127, pp. 580-585, 2007.
[46] Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie, and L. S. Zheng, "High-sensitivity humidity sensor based on a single SnO2 nanowire," Journal of the American Chemical Society, vol. 129, pp. 6070-, 2007.
[47] Z. J. Zhuang, X. D. Su, B. Z. Zheng, H. Y. Yuan, Q. Sun, and D. Xiao, "Fabrication of Cu(OH)2 one dimensional nanostructures: Application to humidity sensing," Sensor Letters, vol. 5, pp. 559-564, 2007.
[48] S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh, and I. C. Chen, "A ZnO nanowire-based humidity sensor," Superlattices and Microstructures, vol. 47, pp. 772-778, 2010.
[49] K. P. Yoo, L. T. Lim, N. K. Min, M. J. Lee, C. J. Lee, and C. W. Park, "Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films," Sensors and Actuators B-Chemical, vol. 145, pp. 120-125, 2010.
[50] Q. Y. Tang, Y. C. Chan, and K. L. Zhang, "Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films," Sensors and Actuators B-Chemical, vol. 152, pp. 99-106, 2011.
[51] Z. Y. Xi, Y. Y. Xu, L. P. Zhu, Y. Wang, and B. K. Zhu, "A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)," Journal of Membrane Science, vol. 327, pp. 244-253, 2009.
[52] R. P. Liang, X. Y. Meng, C. M. Liu, and J. D. Qiu, "PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids," Electrophoresis, vol. 32, pp. 3331-3340, 2011.
[53] L. J. Zhu, Y. L. Lu, Y. Q. Wang, L. Q. Zhang, and W. C. Wang, "Preparation and characterization of dopamine-decorated hydrophilic carbon black," Applied Surface Science, vol. 258, pp. 5387-5393, 2012.
[54] B. Chachulski, J. Gebicki, G. Jasinski, P. Jasinski, and A. Nowakowski, "Properties of a polyethyleneimine-based sensor for measuring medium and high relative humidity," Measurement Science & Technology, vol. 17, pp. 12-16, 2006.
[55] J. C. Tu, N. Li, Q. Yuan, R. Wang, W. C. Geng, Y. J. Li, T. Zhang, and X. T. Li, "Humidity-sensitive property of Fe2+ doped polypyrrole," Synthetic Metals, vol. 159, pp. 2469-2473, 2009.
[56] S. F. Si, S. Li, Z. Q. Ming, and L. P. Jin, "Humidity sensors based on ZnO Colloidal nanocrystal clusters," Chemical Physics Letters, vol. 493, pp. 288-291, 2010.
[57] S. T. McGovern, G. M. Spinks, and G. G. Wallace, "Micro-humidity sensors based on a processable polyaniline blend," Sensors and Actuators B-Chemical, vol. 107, pp. 657-665, 2005.
[58] B. Z. Yang, B. Aksak, Q. Lin, and M. Sitti, "Compliant and low-cost humidity nanosensors using nanoporous polymer membranes," Sensors and Actuators B-Chemical, vol. 114, pp. 254-262, 2006.
[59] F. W. Zeng, X. X. Liu, D. Diamond, and K. T. Lau, "Humidity sensors based on polyaniline nanofibres," Sensors and Actuators B-Chemical, vol. 143, pp. 530-534, 2010.
[60] N. Rezlescu, C. Doroftei, and P. D. Popa, "Humidity-sensitive electrical resistivity of MgFe2O4 and Mg0.9Sn0.1Fe2O4 porous ceramics," Romanian Journal of Physics, vol. 52, pp. 353-360, 2007.
[61] C. L. Dai, M. C. Liu, F. S. Chen, C. C. Wu, and M. W. Chang, "A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique," Sensors and Actuators B-Chemical, vol. 123, pp. 896-901, 2007.
[62] W. P. Tai and J. H. Oh, "Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films," Sensors and Actuators B-Chemical, vol. 85, pp. 154-157, 2002.
[63] T. Miki, K. Nishizawa, K. Suzuki, and K. Kato, "Electrochemical properties of nanoporous TiO2 films," Electroceramics in Japan Viii, vol. 301, pp. 83-86, 2006.
[64] T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, "LPG-based PVA coated sensor for relative humidity measurement," IEEE Sensors Journal, vol. 8, pp. 1093-1098, 2008.
[65] H.C. Lee, T. H. Cheu, W. L. Tseng, and C. H. Lin "Novel Colorimetric Detection of Dopamine Biosample by Core Etching of Synthesized Gold Nanoparticles," IEEE SENSORS, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code