Responsive image
博碩士論文 etd-0827112-144405 詳細資訊
Title page for etd-0827112-144405
論文名稱
Title
低壓逆滲透薄膜應用於淨水程序之阻塞現象分析
Effects of membrane fouling on the operation of low pressure reverse osmosis system for water treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
病理解剖、低壓逆滲透、污堵、結垢、掃流過濾
fouling, LPRO, autopsy, cross-flow filtration, scaling
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
台灣南部淨水場之自來水原水多取自河川地表水、伏流水及深井地下水。其水質因受地形地質及水源區內之居民生產活動影響,造成原水水質多呈現高硬度及高氨氮之水質特性。又因高屏溪原水於豐、枯水期期間之水質穩定性難以掌握之情形下,於傳統淨水處理程序後需以高級淨水程序之處理工法,方能達到高質飲用水之水質要求。台灣南部某處自來水淨水場之原水來自於含石灰或泥岩地質之地下水,因此其原水硬度與溶解性固體物濃度偏高。原水水質分析結果顯示硬度高於300 mg/L as CaCO3,其中二氧化矽(SiO2)濃度亦高於進水要求之15 mg/L,另進水之金屬物質如鈣、鎂、矽及鋁分別為74.3 mg/L、18.7 mg/L、12.9 mg/L及0.1 mg/L。此結果顯示高含量之硬度及無機物質將造成原水處理之負荷。本文主要是針對應用低壓逆滲透(low pressure reverse osmosis, LPRO)薄膜系統去除進流水中不純物質,使其出水符合高級水水質之高級淨水場為對象,進行探討此水處理淨化程序中,所遭遇到薄膜阻塞與積垢等問題。因此亦藉由實廠操作經驗的累積,水質數據的收集彙整,設備單元採樣分析,並持續對架上操作之 LPRO薄膜進行病理解剖。同時利用現場架設3支家用小型單一RO膜管設備進行模型試驗。測試時,同樣收集模型的操作數據分析,並調整模型進流水有無添加抗垢劑對薄膜阻塞程度之試驗。LPRO進流水水質明顯受前處理效能影響甚大,相對的,薄膜阻塞的現象與進流水水質有密切的關係,不同類型阻塞物之本身的複雜性及彼此間之交互作用,薄膜阻塞幾乎是同時發生,所以鑑別和區分出不同的阻塞類型並不容易。分析結果顯示,當LPRO進水溫度下降時,將使黏滯係數(viscosity)增加並導致產水水量降低。並由感應耦合電漿光譜儀(inductively couple plasma optical emission spectrometry, ICP/OES)分析得知,薄膜前段阻塞多為鋁及矽之成分,其來源是混凝程序添加鋁鹽及自然水體既存在矽所貢獻。再由有機物之分析結果可知,產水之總有機碳(total organic carbon, TOC)含量均介於0.2-1.4 mg/L之間,濃度並不高。但若僅以UV254之去除率計算,皆可達75%以上,如此結果顯示前處理淨水程序針對小分子有機物之負荷有限,亦而貢獻環狀結構之有機物於LPRO。另以螢光激發發射光譜圖 (excitation emission fluorescent matrix, EEFM)分析LPRO進水及產水之有機物光譜,在激發/發射(excitation/emission, EX/EM)波長之區塊顯示,進水於螢光波峰230/340 nm、280/330 nm及240/400 nm之三種波峰之螢光強度值,經RO膜處理後,水中低發射波長之螢光強度值下降,而高發射波長240/400 nm之有機物質明顯消失,此表示RO對高發射波長之有機物有很好之去除效果,顯示有機物因而存於膜表面。另由電子顯微鏡(scanning electron microscopy, SEM)及能量散佈光譜儀(energy dispersive X-ray, EDX)進行成分分析等觀察,其薄膜前段表面積垢物以鋁及矽之結晶物居多,而後段卻以碳酸鈣與碳酸鎂為主要阻塞成分。因此原水水質含多量金屬及有機物,均未能有效在前處理流程之混凝、沈澱及快濾移除,雖可藉由LPRO可直接進行淨化,但金屬及有機物將導致其產生阻塞問題。
Abstract
The tap-water treated by water treatment plants in southern Taiwan is coming from surface water of the rivers, subsurface stream and underground water of deep wells. The original raw water possesses were high level of hardness and ammonia- nitrogen solute due to affection by terrain, geology and human activities within water origin area. And considering the water quality from Kao-ping river origin is hard to control during in rain fall and dry season, we were to construction efficiency procedure of water treatment to obtain a high quality of drink water. There were high hardness and TDS from strata limestone of groundwater to increase treatment difficulty in southern Taiwan water treatment plant. Therefore, recommended that the influent water standards were limited hardness and silicate (SiO2) less than 300 mg/L and 15 mg/L, respectively. On the other hand, the metal substances Ca, Mg, Si and Al in influent water were 74.3 mg/L, 18.7 mg/L, 12.9 mg/L and 0.1 mg/L, respectively. Results show high inorganic substances that could increase the treatment loading. This project of the study, were make sure the problem of membrane clogging and fouling happened to the finest water treatment plants who use LPRO membrane system to remove the impurity in the influent water. Moreover, by accumulation of processes operation experience on site were according to water quality statistics data and membrane autopsy of single LPRO membrane by processes. In the same time, we prepared three single tube of RO membrane to experiment on site and collected data from before and after antifouling additive, that could find the membrane fouling and clogging results of the influent raw water. Obviously, the influent raw water quality into LPRO membrane is closely connected to the efficiency of treatment plant. The results show when the temperature decreased of influent raw water that could decrease the effluent volume from LPRO, because the water temperature affected by increase viscosity of raw water. The first part clogging substances of membrane were aluminum (Al), that could be use aluminate coagulant to make increase more aluminum. And the TOC value of the effluent were from 0.2 to 1.4 mg/L, that shows the effluent water was kept stably but UV254 value were have more than 75% efficiency. Results of organic analysis on LPRO effluent indicates the pretreatment process could leave annular structure organic. In other hand, when using EEFM to analysis the spectra sampling of organic of LPRO, there finding a lot low emission wavelength fluoresces of influent on EX/EM 230/340 and decrease the wavelength fluoresces value on EX/EM 280/330 and 240/340 by RO membrane system of LPRO. To be worth mentioning, when organism of sampling fluoresces value during high emission wavelength on EX/EM 240/400 nm was disappeared, that indicates RO membrane has good performance to separation organism of water. And results of elements analysis on RO membrane surface were using SEM and EDX have a lot aluminum and silicate on segment RO membrane module. Therefore, results show pretreatment process of coagulation and sedimentation could not treatment metal substances and organic efficiency, that was to effect directly cause to make the problems of membrane fouling and clogging.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖次 x
表次 xiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及方向 3
第二章 文獻回顧 4
2.1 逆滲透薄膜的演變 4
2.1.1 滲透及逆滲透現象 4
2.1.2 逆滲透膜的開發及應用 7
2.1.3 逆滲透膜材料 9
2.1.4 逆滲透薄膜的製備 10
2.1.5 厚膜與薄膜 11
2.2 低壓薄膜淨水處理之應用 12
2.2.1 複合薄膜的構造 12
2.2.2 螺旋纏繞式薄膜 15
2.2.3 低壓逆滲透系統的基礎 17
2.2.4 螺旋纏繞式薄膜之優缺點 20
2.3 薄膜系統作用機制 22
2.3.1 操作壓力的影響 23
2.3.2 進流水水質之影響 24
2.3.3 回收率之影響 34
2.3.4 掃流過濾 35
2.4 造成薄膜阻塞之物質 37
2.4.1 淨水場設置逆滲透處理程序淨化水質 38
2.4.2 污堵 40
2.4.3 結垢 42
2.5 現行國內淨水廠薄膜處理程序相關應用 42
2.5.1 飲用水的淨化 46
2.5.2 淨水場逆滲透薄膜應用 48
2.5.3 混配式高級處理程序 48
2.5.4 淨水場薄膜選用重點 50
2.6國內薄膜應用於自來水處理操作及維護 53
第三章 實驗設備與方法 54
3.1 研究及實驗流程 54
3.2 實驗材料 56
3.2.1 實場使用之工業型逆滲透膜管 56
3.2.2 測試用模型之家用型逆滲透膜管 57
3.3 實驗設備 58
3.3.1 薄膜實場設備試驗 58
3.3.2 家用型RO TFC-2012-75薄膜模組試驗 61
3.3.3 薄膜組合程序 63
3.4 實驗藥品及分析儀器 66
3.4.1 實驗藥品 66
3.4.2 分析儀器 67
3.5實驗水質分析項目及方法 68
3.5.1 pH量測 68
3.5.2 濁度分析 68
3.5.3 鹼度分析 69
3.5.4 硬度分析 70
3.5.5 非揮發溶解性有機碳分析 70
3.5.6 UV254吸光值 71
3.5.7 淤泥密度指數測定 71
3.5.8 硫酸鹽 72
3.5.9 顆粒粒徑分析 72
3.5.10 鋁、鋇、鈣、鎂、鍶、鐵、錳、鉀 72
3.5.11 積垢趨勢計算 73
3.5.12 藍氏飽和指標 74
3.5.13 螢光激發發射光譜圖 77
3.5.14 生物可利用有機碳分析 78
3.6 薄膜表面分析方法 80
3.6.1 高解析熱電子型場發射掃描式電子顯微鏡之顯微觀測 80
3.6.2 X光繞射儀之薄膜表面粉末之晶相分析 80
第四章 結果與討論 81
4.1 淨水場原水及薄膜進流水水質特性 81
4.1.1 原水及薄膜進水之pH、鹼度、總硬度、濁度與硫酸鹽基本水質分析 82
4.1.2 原水及薄膜進水水中顆粒性物質分析 83
4.2 淨水場LPRO系統操作之物理性水質數據整理分析 84
4.2.1 pH 84
4.2.2 導電度 85
4.2.3 溫度 86
4.2.4 污泥密度指數 88
4.3 淨水場LPRO系統操作之化學性水質數據整理分析 89
4.3.1 總溶解固體量 89
4.3.2 總硬度 90
4.3.3 鐵、錳 92
4.3.5 藍氏飽和指數 97
4.4 淨水場LPRO系統操作之有機物水質數據整理分析 100
4.4.1 總有機碳 100
4.4.2 UV254與NPDOC 101
4.4.3 生物可利用有機碳 103
4.4.4 淨水場原水與LPRO進、產水之EEFM分析 106
4.4.5 總菌落數 110
4.5 實場LPRO薄膜之病理解剖 113
4.5.1 薄膜表面觀察 113
4.5.2 實場LPRO薄膜之SEM-EDX分析結果 117
4.5.3 實場LPRO薄膜表面粉末之晶相分析 125
4. 6 家用型(TFC-2012-75)RO模型之阻塞現象分析比較 127
4.6.1 未添加及添加抗垢劑對薄膜通量與水質之影響 (回收率40%) 128
4.6.2 家用型RO1、2號膜表面觀察與SEM-EDX分析 133
4.6.3 添加抗垢劑對薄膜通量與水質之影響(回收率20%) 137
4.6.4 家用型RO3號膜表面觀察與SEM-EDX分析 139
4.7 薄膜阻塞機制之探討 141
第五章 結論與建議 142
5.1 結論 142
5.2 建議 143
附錄 A 153
附錄 B 158
附錄 C 159
附錄 D 160
附錄 E 161

參考文獻 References
Agenson, K. O., Urase, T., Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Separation and Purification Technology ,55, 147-156, 2007.
Ahn, W. Y., Kalinichev, A.G., Clark, M. M., Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: Experimental and molecular modeling study. J. Membr. Sci., 309 (1-2): 128-140, 2008.
Al-Amoudi, A. S., Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes. A review, Desalination, 259, 1-10, 2010.
Al-Amoudi, A. S., Lovitt, R. W., Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci., 303, 4-28 , 2007.
Alhadidi, A. S., Kemperman, A. J. B ., Blankert, B., Schippers, J. C., Wessling, M., van der Meer, W. G. J., Silt density index and modified fouling index relation, and effect of pressure,temperature and membrane resistance. Desalination, 273, 48-56, 2011.
Ang1,W. S., Yip, N. Y., Tiraferri, A., Elimelech, M., Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning. J. Membr. Sci., 382, 100-106, 2011.
Arabi, S., Nakhla, G., Impact of calcium on the membrane fouling in membrane bioreactors. J. Membr. Sci., 343, 110-118, 2009.
Ates, N., Yilmaz, L., Kitis, M ., Yetis, U., Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. J. Membr. Sci., 328, 104-112, 2009.
Bellona, C., Marts, M., Drewes, J. E., The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Separation and Purification Technology, 74, 44-54, 2010.
Biofouling of spiral wound membrane system. Hans Vrouwenvelder
http://repository.tudelft.nl/view/ir/uuid%3Aae10097a-68e8-41a2-a51e-593c985c818d/
Chang, I. S., Kim, S. N., Wastewater treatment using membrane filtration-effect of
biosolids concentration on cake resistance. Process Biochemistry, 40, 1307-1314, 2005.
Chang, J. S., Tsai, L., Vigneswaran., J. S., Experimental investigation of the effect of particle size distribution of suspendedparticles on microfiltration. Wat. Sci. Tech., 34, 133-140, 1996.
Charnock, C., Kjønnø, O., Assimilable organic carbon and biodegradable dissolved organic carbon in norwegian raw and drinking waters. Water Res., 34(10):2629-2642, 2000.
Choi, K.Y. J., Bench-scale evaluation of critical flux and TMP in low - pressure membrane filtration. Journal American Water Works Association, 97 (7), 134-143, 2005.
Chuang, S. H., Chang, W. C., Chang, M. C., Sung, M. A., The effects of soluble organic matters on membrane fouling index. Bioresource Technology, 100, 1875-1877, 2009.
Dow Chemical Company Filmtec Reverse Osmosis Membrance Technical Manual, 2004.
Escobar, I. C., Hong, S., Randall, A. A., Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membrane. J. Membr. Sci., 175,1-17, 2000.
FILMTEC™., Reverse osmosis membranes technical manual. The Dow Chemical Company, 2009.
Gabelich, C. J., Chen, W. R., Yun, T. I., Coffey, B. M., Suffet, I. H., The role of dissolved aluminum in silica chemistry for membrane processes. Desalination,
180 (1-3),307-319, 2005.
Gabelich, C. J., Ishida, K. P., Gerringer, F. W., Evangelista, R., Kalyan, M., Suffet, I. H.”Mel”., Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination, 190, 147-160, 2006.
Gheorghe P., Membrane computing. Scholarpedia., 5 (1):9259, 2010.
Gwon, E., Yu, M., Oh, H., Ylee, Y., Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Res., 37(12),
2989-2997, 2003.
Howe, K. J., Clark, M. M., Effect of coagulation pretreatment On membrane filtration performance. J.Am.Water Works Assoc, 98 (4), 133-146, 2006.
Huang, H., Lee, N., Young, T. A., Amy, G., James, C. L., Jacangelo, J. G., Natural organic matter fouling of low pressure, hollow fiber membranes: Effects of NOM source and hydrodynamic conditions. Water Res.,41 (17), 3823-3832, 2007.
Huang, H., Schwab, K., Jacangelo, J. G., Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol., 43 (9), 3011-3019, 2009.
Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York, 1979.
Jarusutthirak, C., Amy, G., Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ. Sci. Technol., 40, 969-974, 2006.
Keene, E. C. & Estroff, L., Microscopy image contest : poly-crystalline calcite . from http://www.ccmr.cornell.edu/facilities/Winners06Sum/ellenkeene.html, 2006.
Kull, K. R., Steen, M. L., Fisher, E. R., Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J. Membrane Sci., 246, 203-215, 2005.
Laabs, C. N., Amy, G. L., Jekel, M., Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration. Environ. Sci. Technol., 40 (14), 4495-4499, 2006.
Leiknes, T., Myklebust, H., Odegaard, H., Metal membranes for drinking water treatment. Membrane Technology, 6-10, 2005.
Liang, S., Liu, C., Song, L., Soluble microbial products in membrane bioreactor
operation: Behaviors, characteristics, and fouling potential. Water Res., 41, 95-101, 2007.
Lin, C. F., Lin, Y. C., Chandana, P. S., Tsai C. Y., Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline. Water Res., 43, 389-394, 2009.
Lin, C. F., Mass retention of humic materials on membrane fouling. 2nd ASPIRE,IWA, Perth, Australia, 2007.
Lin, Y. L., Chiang, P. C., Chang, E. E., Reduction of disinfection by-products precursors by nanofiltration process. Journal of Hazardous Materials, B137, 324-331, 2006.
Long, F., Zhu, A., Wang, X. L., Zhu, W. P., Membrane flux and CaCO3 crystallization in the unstirred dead-end nanofiltration of magnetic solution. Desalination.,186, 243-254, 2005.
Lou, J. C., Lee, W. L., Han, J. Y., Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction. J. Environ. Manage., 82(1), 1-12, 2006.
Louie, J. S., Pinnau, I., Ciobanu, I., Ishida, K. P., Ng, A., Reinhard, M., Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. J. Membr. Sci., 2006.
Maskooki, A., Kobayashi, T., Mortazavi , S., Maskooki, A., Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology., 59,67-73, 2008.
McCloskey, B. D., Novel surface modifications and materials for fouling resistant water purification membranes. The University of Texas at Austin, Chemical Engineering, 2009.
Munir, C., Ultrafiltration and microfiltration handbook. Technomic, Lancaster,1998.
Mulder, M., Basic principles of membrane technology. Kluwer Academic Publishers, The Netherlands, 1996.
Ng, K. K., Lin, C. F., Lateef, S. K., Hong, P. K., Yang, P. Y., The effect of soluble microbial products on membrane fouling in fixed carrier biological system. Separation and Purification Science., 72, 98-104 , 2010.
Nghiem, L. D., Hawkes, S., Effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination., 236, 273-281, 2009.
Paun, G., Membrane computing, scholarpedia., 5(1):9259, 2010.
Pavia, D. L., Lampman, G. M., Kriz, G. S., Vyvyan, J. R., Introduction to 157 Spectroscopy, 4th ED. Cengage Learning, 2008.
Rebhun, M., Lurie, M., Coagulation of organic color withHydrolyzing coagulant. Wat. Sci. Tech., 27, No.11, 1-20,1993.
Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, Schrotter, M., J. C., Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res., 40, 710-720, 2006.
Rubia, A., Rodriguez, M., Leon, V. M., Prats, D., Removal of natural organic matter
and THM formation potential by ultra- and nanofiltration of surface water.
Water Res., 42 (3), 714-722, 2008.
Singh, P. S., Joshi, S. V., Trivedi, J. J., Devmurari, C. V., Rao, A. P., Ghosh, P. K., Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J. Membr. Sci., 278, 19-25, 2006.
Sioutopoulos, D. C., Yiantsios, S. G., Karabelas, A. J., Relation between fouling characteristics of RO and UF membranes in experiments with colloidal organic and inorganic species. J. Membr. Sci., 350, 62-82, 2010.
Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., Ngo, H. H., Effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent, J. Membr. Sci., 234, 111-120, 2004.
Tran, T., Bolto, B., Hoang, M., An autopsy study of a fouled reverse osmosis membrane element used in brackish water treatment plant. Water Res., 41: 3915-3923, 2007.
Tzotzi, C., Pahiadaki, T., Yiantsios, S. G.., Karabelas, A. J. Andritsos, N., A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. J. Membr. Sci., 296(1-2): 171-184, 2007.
Van der kooij, D., Visseer, A., Hijnen, W. A. M., Determining the concentration of easily assimilable organic carbon in drinking water. Jour.AWWA, 74(10), 540-545, 1982.
Ver´ssimo, S., Peinemann, K. V., Bordado, J., Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. J. Membr. Sci., 279, 266-275, 2006.
Vrouwenvelder, J. S., Van Loosdrecht, M. C., Kruithof, J. C., A novel scenario for biofouling control of spiral wound membrane systems. Water Res., 2011.
Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., Amy, G.., Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci., 279, 165-175, 2006.
Yeh, H. H., Lai, W. L., The application of pellet softening in drinking water treatment-a pilot study. the 7th International Workshop on Drinking Water Quality and Treatment Technology, Taipei, Taiwan, May 29-31, 7-1~7-8, 2001.
Yoon, Y., Amy, G., Cho, J., Her, N., Effects of retained natural organic matter on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination, 173, 209-221, 2005.
Young T. H., Wang D. M., The effect of the second phase inversion on microstructures in phase inversion EVAL membranes. J. Membr. Sci., 146, 169-178, 1998.
Yu, C. H., Fang, L. C., Lateef, S. K., Wu, C. H., Lin C. F., Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid for ultrafiltration. Journal of Hazardous Materials, accepted, 2010.
朱敬平,薄膜分離之應用,財團法人中興工程顧問社環境工程研究中心,2007。
呂維明,固液分離技術,高立圖書有限公司,台北,2005。
金棠科技股份有限公司,自來水深度處理雙膜法技術介紹-高雄拷潭淨水場增設高級處理設備工程及運行簡介。
林哲昌、揚智輝,自來水處理之薄膜積垢物去除技術研究,財團法人中興工程顧問社專案研究報告,2003。
林哲昌,淨水薄膜前處理程序評估與應用,中興工程,96:75-84,2007。
徐又一、徐志康,高分子膜材料,化學工業出版社,北京,2005。
張錦松、張錦輝、李孫榮、陳健民、曾如娟,薄膜分離法,環工單元操作,高立圖書有限公司,1996。
郭興中,薄膜系統操作維護,台灣環境產業雙月刊,17:8-10,2003。
郭興中、楊國洲,創造好水淨力十足-高雄地區增設薄膜法高級淨水處理工程之介紹,節水季刊,28,2002。
陳見財,分離膜污染阻塞與控制簡介,台灣環境產業雙月刊,11:15-16,2003。
童國倫、阮若屈,最小心眼的薄膜,逆滲透膜與奈米濾膜,科學發展, 429, 20-24頁,2008。
黃國楨,掃流微過濾之發展與應用,中國化學工程學會會刊,第51卷第3期,第2-13頁,2004。
葉宣顯,前處理對NF薄膜程序影響之研究,第17屆自來水研究發表會報告集, 231頁,台北,2000。
葉宣顯、曾怡禎、林財富、陳振正、賴文亮,澄清湖高級淨水模型廠試驗個案報告,中華民國自來水協會第十八屆自來水研究發表會論文,15, Nov., 269-287頁,2001。
楊博名、高志明、黃俊仁、賴文亮,回收再利用之技術及案例介紹,化工技術-熱力學運用專輯,水,第18卷,第3期,第140-149頁,2010。
經濟部水利署,楠梓加工出口區再生水模型廠技術顧問計畫,研討會論文,2010。
鄭領英,王學松,膜的高科技應用,五南圖書出版股份有限公司,2003。
賴文亮,各種淨水程序對生物可分解有機質及消毒副產物之控制,博士論文,國立成功大學環境工程研究所,台南,2002。
簡全基、高志明、陳秋妏、董正釱,應用冷光法偵測水中生物可利用有機碳之可行性評估,台灣公共衛生雜誌,98005-1,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.172.252
論文開放下載的時間是 校外不公開

Your IP address is 18.223.172.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code