Responsive image
博碩士論文 etd-0827112-151146 詳細資訊
Title page for etd-0827112-151146
論文名稱
Title
以元素疊層摻入Sb之硒化法製備CIGS薄膜之研究
Fabrication of Sb-doped CIGS by selenization of stacked elemental layer and thin solar cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-25
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
CIGS、硒化、Sb、薄膜、元素疊層
CIGS, Sb, selenization, stacked elemental layers, thin film
統計
Statistics
本論文已被瀏覽 5685 次,被下載 2169
The thesis/dissertation has been browsed 5685 times, has been downloaded 2169 times.
中文摘要
本研究係利用單元素疊層前驅物進行硒化(selenization)反應合成Cu(In,Ga)Se2(CIGS)。實驗製程為鍍製Cu/Sb/In/Ga/Se元素疊層前驅物,在真空腔體中充滿Se氣氛下由室溫升溫至550 oC持溫反應形成CIGS。XRD、Raman及EPMA成分分析結果發現Ga在此製程沒有摻入形成CIGS。接著嘗試以不同的疊層前驅物製作CIGS測試片發現唯有疊層Cu/In/GaSe/Se疊層前驅物有達到形成CIGS的結果,但還是有2次相產生。根據文獻[27],發現沒有形成CIGS的原因為在硒化過程中會因相互擴散(interdiffusion)的影響造成先形成三元固態相的情況(CIS+CGS、CIS+Ga…etc.),而固態相要進行擴散反應將會受到阻礙。
接著改以快速硒化製程製作CIGS測試片,在充滿氮氣的環境下以兩階段快速升溫的方式(在300oC持溫後再升到650oC持溫)形成CIGS。使用此方式原因為升溫速度快可以藉此避免形成三元固相。疊層沿用在Se氣氛下進行硒化製程下最好結果之Cu/In/GaSe/Se前驅物,在固定製程條件下XRD結果(112)繞射峰為26.8o-26.9o,以EPMA成分分析做比對發現Ga實際的量會隨著估計值計算量增加而增加(估計值4atom%實際值2atom%;估計值9.2tom%實際值10atom%,Ga/Ⅲ=0.32),但組成仍待修正。接著將Sb加入疊層中觀察其對CIGS影響,從SEM結果來看Sb在快速硒化製程下的確有改善CIGS薄膜平整度以及幫助晶粒長大的現象,晶粒大小約1至3μm。
Abstract
This study is using selenization of stacked elemental layers to form Cu(In,Ga)Se2(CIGS). In the process, use Cu/Sb/In/Ga/Se precursor to heat to 550 oC at Se vapor in vacuum chamber. From the result of XRD、Raman and EPMA, that show of the precursor do not form to CIGS. After that, The result of using different layers precursor to form CIGS show that only Cu/In/GaSe/Se reach to form CIGS, but it still has second phase. According to the literature,the reason for the formation of CIGS selenide process due to interdiffusion caused the formation of ternary solid phase, the solid phase diffusion reaction could be hampered.And then change to use rapid thermal selenization to form CIGS with two step of heating (hold at 300 oC and 650 oC) at N2 atmosphere. The laminated follow the best results in the selenide process Cu/In/GaSe/Se precursors in Se atmosphere, the (112) preferred orientation is 26.8o-26.9o in the XRD results of the fixed process conditions. EPMA composition analysis and comparison of Ga actual amount will increase with the estimated value of the amount of increase(Estimated value 4atom% actual value 2atom%;Estimated value 9.2tom% actual value 10atom%,Ga/Ⅲ=0.32), but the composition has yet to amend. Then will join Sb on CIGS observed from the SEM results Sb does improve the CIGS thin film flatness as well as to help grain growth in rapid thermal selenization, grain size of about 1 to 3μm.
目次 Table of Contents
致謝 II
摘要 III
Abstract IV
目錄 V
表目錄 VII
圖目錄 VIII
一、 簡介 1
1.1前言 1
1.2 太陽能電池原理 1
二、 文獻回顧與實驗動機 3
2.1 CIS和CIGS材料特性 3
2.2 CIS製程介紹 8
2.2.1 共蒸鍍法 8
2.2.2 硒化製程 8
2.3 CI(G)S元件結構及各層膜特性 11
2.4實驗動機與目的 13
三、 實驗製程方法與分析儀器介紹 15
3.1 實驗製程系統與原理 15
3.1.1 濺鍍原理 15
3.1.2 磁控濺鍍系統 15
3.1.3 分子束熱蒸鍍系統 16
3.2 元件製作流程 17
3.3 元件各層膜準備作業 18
3.4 實驗流程與步驟 20
3.5分析儀器 20
3.5.1 XRD(X-ray 繞射儀) 20
3.5.2 SEM(掃描式電子顯微鏡) 21
3.5.3 四點探針 21
3.5.4 I-V量測與模擬光源 21
3.5.5 EPMA(電子微探儀) 22
四、 結果與結論 23
4.1 元素疊層前驅物經硒化製程後結果 23
4.1.1 Cu/Sb/In/Ga/Se經硒化反應後結果 23
4.1.2 改變前驅物疊層進行硒化反應結果 26
4.1.3 在Se氣氛下硒化製程結果討論 33
4.2 以元素疊層前驅物進行快速硒化製程結果 34
4.2.1 CIS快速硒化結果 34
4.2.2 CIGS快速硒化結果 36
4.2.3 快速硒化製程CIGS結果討論 46
五、 結論 47
六、 參考文獻 49
參考文獻 References
[1]Miguel A. Contreras, Brian Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, Rommel Noufi, Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar CellsProg. Photovolt. 7, 311-316(1999)
[2]Adams, W.G. and R.E. Day, Proc. R. Soc., 1877. A25: p. 113.
[3] Stanbery, B. J. (2002). Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State & Materials Science, 27(2), 73.
[4] B.M. Bagol, V.K. Kapur, A. Halani, A. Minnick and C. Leidholm, Photovoltaic
Specialists Conference,1993.,Conference Record of the Twenty Third IEEE.
[5]Yoshihiro Hamakawa, Thin-film solar cells : next generation photovoltaics
and its applications, Berlin ; New York : Springer,2004, p.164~169
[6]F. Abou-Elfotouh, D. J. Dunlavy and T.J. Coutts; Solar Cell, 27(1986),237
[7]H. H. CHANG, T. X. ZHONG, H. Y. UENG and H. L. HWANG, New Perspectives of Defect Physics and Defect Chemistry for Copper Ternary Chalcopyrite Semiconductors.
[8] S. H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Letters, Vol. 72, Numb. 24
[9] H. W. Schock, in proceedings of the 12th European Photovoltaic Solar Enery
Conference, Amsterdam, The Netherland, p.944.
[10] Rau, U., Schmidt, M., Jasenek, A., Hanna, G., & Schock, H. W. (2001).
Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role
of defects for the device performance. Solar Energy Materials and Solar Cells, 67(1-4), 137-143.
[11]Min Yuan, David B. Mitzi,, Wei Liu,Andrew J. Kellock, S. Jay Chey, and Vaughn R. Deline(2010)
Optimization of CIGS-Based PV Device through Antimony Doping. Chem. Mater. 22, 285–287.
[12]張宗文,Sb 摻入對CuInSe2薄膜成長與特性之影響,國立中山大學材料科學研究所碩士論文(1994)
[13]徐有欽,CuInSe2:Sb複晶薄膜太陽能電池之研究,國立中山大學材料科學研究所碩士論文(2003)
[14]B.H. Tseng, G.W. Chang, and S.B. Lin, 1995, Influences of Sb on the Growth and
Properties of CuInSe2 Thin Films. Japanese Journal of Applied Physics, Vol. 34, pp. 1109-1112.
[15]李宙澄,CuInSe2:Sb 太陽電池元件研製,國立中山大學材料與光電科學研究所碩士論文,2011.
[16]Tom Markvart and Luis Castaner Practical Handbook of Photovoltaics: Fundamentals and Applications, 2006. p. 369~374
[17]Chu T, Chu S, Lin S, Yue J, J. Electrochem, 1984. Soc. 131, 2182-2185
[18] Growth of CuInSe2 thin Films by high vapour Se treatment of co-sputtered
Cu-In alloy in a graphite container F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon,B.T. Ahn, Thin Solid Films 338 (1999) 13-19.
[19]P. K. Johnson, J. T. Heath, J. D. Cohen, K. Ramanathan and J. R. Sites, Prog.
Photovolt: Res. Appl. 2005; 13:579–586
[20]F.O. Adurodija, M.J. Carter and R. Hill, “A novel method of synthesizing P- CulnSe, thin films form the stacked elemental layers using a closed graphite box”, IEEE,1994
[21]何昱暘,CuInSe2薄膜快速硒化製程之改良研究,國立中山大學材料與光電科學研究所碩士論文,2011.
[22]John H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films 260 ( 1995) 26-31
[23]D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films 480–481 (2005) 433– 438
[24]吳婉玲,Sb摻入CuInSe2薄膜對其太陽電池特性之影響,國立中山大學材料與光電科學研究所碩士論文,2001.
[25]李俊賢,CuInSe2:Sb薄膜太陽能電池之研製,國立中山大學材料與光電科學研究所碩士論文,2004.
[26]A. Ashour, A.A.S. Akl, A.A. Ramadan, K. Abd, EL-Hady, Thin Solid Films 467 (2004)300-307
[27]M. Marudachalam, R. W. Birkmire, and H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys. 82 (6), p2896-2905 (1997).
[28] 潘家叡,CuInSe2薄膜快速硒化製程之研究,國立中山大學材料與光電科學研究所碩士論文,2009。
[29]Thin Films and Nanostructures Cu(In1-xGax)Se2 Based Thin Film Solar Cells.
[30] Neelkanth G. Dhere and Shanker Kuttath, Helio R. Moutinho, Morphology of precursors and CuIn1-xGaxSe2 thin films prepared by a two-stage selenization process.(1995)
[31] Neelkanth G. Dhere, Kevin W. Lynn, CuInl-xGaxSe2 thin film solar cells by
two-selenizations process using Se vapor.(1996)
[32] Neelkanth G. Dhere, Shanker Kuttath, and Kevin W. Lynn, Robert W. Birkmire and William N. Shafarman, polycrystalline CuIn1-xGaxSe2 thin film PV solar cells prepared by two-stage selenization process using Se vapor.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code