Responsive image
博碩士論文 etd-0827112-155243 詳細資訊
Title page for etd-0827112-155243
論文名稱
Title
Cu2ZnSnSe4薄膜快速硒化製程之研究
A study of rapid thermal selenization process of Cu2ZnSnSe4 films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-25
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
硒化製程、CZTSe、RTP、硒化物、薄膜
CZTSe, RTP, thin film, selenides, selenization
統計
Statistics
本論文已被瀏覽 5647 次,被下載 986
The thesis/dissertation has been browsed 5647 times, has been downloaded 986 times.
中文摘要
本實驗以Se/Cu/Sn/Zn/SLG疊層利用RTP (rapid thermal process) 硒化製程鍍製單一相CZTSe (Cu2ZnSnSe4)薄膜,因其在快速升溫過程中,避開三元硒化物(Cu2SnSe3)的產生,可使反應在短時間內完成,並探討N2和Se量對薄膜品質及附著性的影響,以及確認以RTP硒化製程單一相CZTSe的組成範圍,和利用退火及改變疊層(Se/Cu/Zn/Sn/SLG)方式改善薄膜均勻性,並將其疊至Mo/SLG上,調變升溫速度改善附著性的問題。其結果顯示N2太少時,提供外在壓力太小,使得Se容易跑掉,和N2太大會使多餘的高蒸氣壓氣體快速逃離試片,造成試片隆起,與基板附著性不佳,此外在CZTSe單一相的判斷上,除了XRD和Raman分析,需再由光性分析其能隙值( Eg )大小,進一步判斷是否為單一相結果,本實驗EPMA結果顯示組成落在Cu-poor和Zn-poor範圍內,能隙值在0.88~1.04 eV,電阻率1~10-2 Ω-cm。利用RTP硒化製程,因快速升降溫,使得前驅物之間互相擴散不均,造成薄膜均勻性不佳,利用再退火和改變疊層方式皆有效改善薄膜均勻性,但因Se/Cu/Zn/Sn疊層液相Sn在鈉玻璃基板上產生非濕潤效應,使得薄膜表面成島狀隆起,故以本實驗以Se/Cu/Sn/Zn/Mo/SLG疊層為主,並以15℃/sec的升溫速度,在250℃下退火一分鐘,提升CZTSe與Mo的附著性。
Abstract
This experiment was growing CZTSe (Cu2ZnSnSe4) single phase thin film by using rapid thermal selenization process on Se/Cu/Sn/Zn/SLG thin film. It can complete the reaction to avoid Cu2SnSe3 appearing during the RTP. To discuss the effect of nitrogen and selenium flow rates on the thin film quality and adhesion, and to confirm the composition of the CZTSe single phase thin film. And I also annealed and changed the Se/Cu/Zn/Sn/SLG stacked layer to improve the thin film uniformity. Finally, it was stacked on the Mo/SLG and annealed by varying raising rate of temperature in order to enhance the adhesion. The results indicated that the various flow of nitrogen could cause different conditions. The element selenium easily escaped due to lower nitrogen flow could not provide enough outer pressure; larger nitrogen flow carried the extra high vapor pressure gas go through the surface of substrate and lead to the worse adhesion with the substrate. Unfortunately, using the analysis of X-ray diffraction and Raman spectrum couldn’t determine the single phase of CZTSe. However, it has been confirmed by optical bandgap. In this experiment, the compositions of CZTSe single phase are found to be Cu-poor and Zn-poor, the optical bandgap (Eg) is 0.88~1.04 eV, and the resistivity (ρ) is 1~10-2 Ω-cm. By the rapid thermal selenization process, because of the rapid gradient of temperature, it brought out the diffused non-uniformly among the precursors. Therefore, the uniformity of thin films would not be perfect. As the result, re-annealing and change are the efficient methods to improve the uniformity of the thin film. The problems are un-wetting effect exists in the stacked liquid phase Se/Cu/Zn/Sn and the sodium glass substrates. The morphologies of the thin films are island connection. Finally, increasing the temperature in 15 oC per second and annealing the thin film for one minute at 250 oC with the stacked layer of Se/Cu/Sn/Zn/Mo/SLG are successful to promote the adhesion between the CZTSe and Mo.
目次 Table of Contents
目錄
致謝 ii
摘要 iii
Abstract iv
目錄 iv
圖目錄 viii
表目錄 x
一、簡介 1
1.1前言 1
1.2太陽電池原理 2
二、文獻回顧 4
2.1 Cu2ZnSnSe4 (CZTSe)主吸收層 4
2.1.1 CZTSe薄膜特性 4
2.1.2 CZTSe薄膜製程 11
2.2實驗動機與目的 12
三、實驗流程與分析儀器 14
3.1鍍製CZTSe薄膜流程 14
3.1.1 鈉玻璃基板(SLG)清洗 14
3.1.2 Cu、Sn和Zn薄膜鍍製 15
3.1.2Se薄膜鍍製 16
3.1.2快速熱退火RTA 17
3.2薄膜分析儀器 18
3.2.1四點探針(4-point) 18
3.2.2 熱探針 19
3.2.3 X光繞射分析(XRD) 19
3.2.4 掃描式電子顯微鏡(SEM) 19
3.2.5吸收光譜儀 20
3.2.6 能量解析光譜儀(EDS) 20
3.2.7 電子探針微區分析儀(EPMA) 20
3.2.8拉曼光譜(Raman) 21
3.2.9霍爾效應量測儀(Hall effect measurement) 21
3.3 實驗流程圖 22
3.4 實驗參數 23
3.4.1 反應途徑 23
3.4.2 N2、Se量調變 23
3.4.3 組成調變 24
3.4.4 薄膜均勻性改善 25
3.5 CZTSe/Mo/SLG 26
四、實驗結果與討論 27
4.1 膜厚估計與誤差 27
4.2 CZTSe RTA製程反應途徑 28
4.3 N2、Se量和升溫速度調變 30
4.4組成調變 35
4.5薄膜均勻性改善 42
4.6 CZTSe/Mo/SLG 47
五、結論 51
六、參考文獻 53
參考文獻 References
[1]. W. Ki and H. W. Hillhouse, A general route to earth aboundant element absorber layers for thin film photo voltaicseith high yield using molecular precursors and non-toxic solvents, IEEE, 978-1-4244-9965-6 (2011).
[2]. Y. Zhao, C. Burda, Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials, Energy Environ Sciences 5, 5564 (2012).
[3]. J. L. Gray, Handbook of Photovoltaic Science and Engineering, P. 61.
[4]. J. L. Gray, Handbook of Photovoltaic Science and Engineering, P. 102.
[5]. T. Maeda, S. Nakamura and T. Wada, Phase stability and electronic structure of In-free photovoltaic semiconductors Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation, Materials Research Society (2009).
[6]. T. Maeda, S. Nakamura, and T. Wada, First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4, Japanese Journal of Applied Physics 50, 04DP07 (2011).
[7]. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters94, 041903 (2009).
[8]. A. Walsh, S. Chen, S. H. Wei, and X. G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4, Advance Energy Material 2, 400-409 (2012).
[9]. S. Chen, X. G. Gong, A. Walsh and S. H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters 94, 041903 (2009).
[10]. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments, Journal of Applied Physics 111, 083707 (2012).
[11].F. Abou-Elfotouh, D. J. Dunlavy and T. J. Coutts, Solar Cell,237, p27 (1986).
[12]. T. Maeda, S. Nakamura, T. Wada, First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4, Thin Solid Films 519 7513-7516 (2011).
[13]. T. Maeda, S. Nakamura, T. Wada, First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4, Thin Solid Films 5197513-7516 (2011).
[14]. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Structural, Electronic and Defect Properties of Cu2ZnSn(S,Se)4 alloys, Materials Research Society (2011).
[15]. S. Chen, J. H. Yang, X. G. Gong, A. Walsh, and S. H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Physical Review B81, 245204 (2010).
[16]. S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, and S. H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells, Physical Review B 83, 125201 (2011).
[17]. R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments, Journal of Applied Physics 111, 083707 (2012).
[18]. S. J. Ahn, S. Jung, J. Gwak, A.Cho, K. Shin, K. Yoon, and J. H. Yun, Band gap determination of Cu2ZnSnSe4 thin films, IEEE (2011).
[19]. G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar and V. Sundara Raja, Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films, Solar Energy Materials and Solar Cells 94, 221–226 (2010).
[20]. C. Julien, M. Eddrief, I. Samaras and M. Balkanski, Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals, Materials Science and Engineering B15, 70-72 (1992).
[21]. M. E. Norako, M. J. Greaney, and R. L. Brutchey, Synthesis and characterization of wurtzite-phase copper tin selenide nanocrystals, JACS 134, 23-26 (2012).
[22]. D. H. Kuo, W. D. Haung, Y. S. Huang, J. D. Wu, Y. J. Lin, Effect of post-deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films, Surface and Coatings Technology 205, S196-S200 (2010).
[23]. Y. T. Zhai, S. Chen, J. H. Yang, H. J. Xiang, X. G. Gong, A. Walsh, J. Kang, and S. H. Wei, Structural diversity and electronic properties of Cu2SnX3 (X=S, Se) :A first-principles investigation, Physical Review B 84, 075213 (2011).
[24]. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, Growth of Cu2ZnSnSe4 single crystals from Sn solutions, S0022-0248 ,12, 00372-7.
[25]. Y. Z. Li, X. D. Gao, C. Yang, F. Q. Huang, The effects of sputtering power on optical and electrical properties of copper selenide thin films deposited by magnetron sputtering, Journal of Alloys and Compounds 505, 623-627 (2010).
[26]. C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, Journal of Applied Physics 107, 053710 (2010).
[27]. N. B. Mortazavi Amiri, A. V. Postnikov, Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: similarities and differences in lattice vibration modes.
[28]. K. Muska, M. Kauk, M. Grossberg, M. Altosaar, J. Raudoja, O. Volobujeva, Influence of compositional deviations on the properties of Cu2ZnSnSe4 monograin powders, Energy Procedia10, 323-327 (2011).
[29]. G. M. Ilari , C. M. Fella, C. Ziegler, A. R. Uhl, Y. E. Romanyukn , A. N. Tiwari, Cu2ZnSnSe4 solar cell absorbers spin-coated fromamine-containing ether solutions, Solar Energy Materials and Solar Cells 104, 125-130 (2012).
[30]. A. Redinger, K. Hones, X. Fontane, V. I. Roca, E. Saucedo, Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin Films, Applied Physics Letters 98, 101907 (2011).
[31]. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Solar Energy Materials and Solar Cells 95, 1421-1436 (2011).
[32]. G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar and V. Sundara Raja, Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications, Applied Physics Letters 41, 205305 (2008).
[33]. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, E. Mellikov, Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy, Thin Solid Films 519 , 7394–7398 (2011).
[34]. A. Redinger and S. Siebentritt, Coevaporation of Cu2ZnSnSe4thin films, Applied Physics Letters 97, 092111 (2010).
[35]. S. Chen, A. Walsh, J. H. Yang, X.G. Gong, L. Sun, P. X. Yang, J. H. Chu and S. H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells, Physical Review B 83, 125201 (2011).
[36]. A. Weber, R. Mainz, and H. W. Schock, On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high Vacuum, Journal of Applied Physics 107,013516 (2010).
[37]. P. M. P. Salome, P. A. Fernandes, and A. F. da Cunha, Influence of selenization pressure on the growth of Cu2ZnSnSe4 films from stacked metallic layers, Physics 3-4, 913-916 (2010).
[38]. M. H. Chiang, Y. S. Fu, T. F. Guo, H. L. Liu, Effects of Zn precursors on solvothermal synthesis of Cu2ZnSnSe4 nanocrystals, Material Letters (2012).
[39]. D. Aaron, R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell, Applied Physics Letters20, 6-11 (2012).
[40]. I. Repins, C. Beall, N. Vora, C. Dehart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi, Co-evaporated Cu2ZnSnSe4 films and devices, Solar Energy Materials and Solar Cells 101, 154-159 (2012).
[41]. Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. A grawal, Fabrication of 7.2% Efficient CZTSSe solar cells using CZTS nanocrystals, JACS, 132, 17384-17386 (2010).
[42]. L. Grenet, S. Bernardi, D. Kohen, C. Lepoittevin, S. Noel, Cu2ZnSn(S,Se)4 based solar cell produced by selenization of vacuum deposited precursors, Solar Energy Materials and Solar Cells 101, 11-14 (2012).
[43]. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell, Advance Energy Material 2, 253-259 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code