Responsive image
博碩士論文 etd-0827112-210757 詳細資訊
Title page for etd-0827112-210757
論文名稱
Title
迷你型噴霧冷卻循環系統設計與性能分析
Design and Performance Analysis of a Miniature Spray Cooling System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-03
繳交日期
Date of Submission
2012-08-27
關鍵字
Keywords
冷卻曲線、極限熱通量、沸騰曲線、奈米流體、迷你型噴霧冷卻系統
Miniature spray cooling system, Nanofludics, Boiling curve, Cooling curve, Critical heat flux
統計
Statistics
本論文已被瀏覽 5722 次,被下載 780
The thesis/dissertation has been browsed 5722 times, has been downloaded 780 times.
中文摘要
本研究旨在設計及製造一迷你型噴霧冷卻系統,其中所製造及採用之腔體、流體供給馬達、熱交換器體積均較傳統小,本實驗探討此一迷你型噴霧冷卻系統在迷你化後之冷卻性能。實驗中以純銅做為測試表面,而後在去離子水中添加不同之奈米粉末(銀、奈米碳管))製作奈米流體,將其噴灑在上述之測試表面上,來提高本系統之散熱能力。本研究針對穩態及暫態兩種方法進行實驗,並以韋伯數做為實驗主要參數,觀察去離子水及不同奈米流體在測試表面上之沸騰現象及記錄測試表面上之溫度變化,並將結果以沸騰曲線圖及冷卻曲線圖表示。本論文最終目的是希望能夠對噴霧冷卻系統迷你化之冷卻效能有更進一步了解,以期能實際應用在微電子零件冷卻裝置上,解決目前電子零件單位面積之發熱功率急遽增加之問題。
Abstract
The aim of this study is to design and build a miniature spray cooling system, in which the manufactured and adopted chamber, pump and heat exchanger are smaller than the conventional ones. An experiment was conducted to explore the cooling performance of the spray cooling system after its size has been minimized. In the experiment, copper was used to make the heated surface and different working media, such as DI water, as nanofludics with silver and multi-walled carbon nanotubes
powder were sprayed on the heated surface to enhance the heat dissipation efficiency of the system. The experiment in this study was set according to two conditions: transient and steady state, with Weber number as the main parameter, to observe the boiling phenomenon of different working media on heated surface and to record the temperature changes of the heated surface. The results were shown in boiling curve and cooling curve. The ultimate goal of this study was to obtain a better understanding of the cooling performance of the miniature spray cooling system in order to apply it to micro-electronic cooling devices, thereby solving the problem of the sharp increase in heating power per unit area on electronic components.
目次 Table of Contents
目錄............................................................................................................i
表目錄........................................................................................................iv
圖目錄........................................................................................................v
符號說明....................................................................................................vii
中文摘要....................................................................................................x
英文摘要....................................................................................................xi
第一章 序論...........................................................................................1
1-1 前言............................................................................................1
1-2 研究背景....................................................................................2
1-3 文獻回顧....................................................................................4
1-4 研究目的....................................................................................15
第二章 實驗設備...................................................................................18
2-1 噴霧系統....................................................................................18
2-2 加熱測試裝置............................................................................18
2-3 流體供應系統............................................................................19
2-4 熱交換器....................................................................................19
2-5 溫度量測記錄儀器....................................................................20
2-6 PIV 系統.....................................................................................20
2-7 工具顯微鏡................................................................................21
2-8 掃描式電子顯微鏡(Scanning Electron Microscope)...........22
第三章 實驗方法及步驟........................................................................29
3-1 測試表面製備............................................................................29
3-2 工作流體製備............................................................................29
3-3 實驗方法....................................................................................30
3-4 實驗步驟....................................................................................32
3-5 數據處理....................................................................................34
第四章 理論分析...................................................................................41
4-1 韋伯數(We)定義...................................................................41
4-2 雷諾數(Re)定義.................................................................... 43
4-3 質量通量(G)計算.................................................................43
4-4 熱通量(q")計算....................................................................44
4-5 表面溫度(Tw)計算...............................................................45
4-6 熱傳係數(h)計算.................................................................45
4-7 奈米流體(Nanofulid)性質分析….......................................46
第五章 誤差分析...................................................................................51
第六章 結果與討論…………………………………………………...57
6-1 穩態曲線...................................................................................57
6-2 暫態曲線...................................................................................61
第七章 結論、建議與改進...................................................................77
7-1 結論...........................................................................................77
7-2 建議與改進...............................................................................77
參考文獻...................................................................................................79
附錄 A......................................................................................................89
參考文獻 References
1. G. E. Moore, "Cramming More Components onto Integrated circuits,"
Electronics, Vol. 38, 1965, No. 8, pp. 114-117.
2. K. Sienski, R. Eden, and D Schaefer, "3-D Electronic Interconnect
Packaging," Aerospace Applications Conference, Vol. 1, 1996, pp.
363-373.
3. G. G. Faeth and L. P. Hsiang, , "Structure and Breakup Properties of
Sprays," International Journal of Multiphase Flow, Vol. 21, 1995, pp.
99-127.
4. L. H. Wachter and N. A. J. Westerling, "The Heat Transfer From a Hot
Wall to Impinging Water Drops in the Spheroidal State," Chemical
Engineering Science, Vol. 21, 1966, pp. 1047-1056.
5. D. E. Titon, M. R. Pais, and L. C. Chow, "High Power Density Spray
Cooling," Technical Report, Wright Research & Development Center,
1989, WRDC-TR-89-2082.
6. M. Ghodbane and J. P. Holman, "Experimental Study of Spray Cooling
with Freon-113," International Journal of Heat and Mass Transfer, Vol.
34, 1991, pp. 1163-1174.
7. M. S. Sehmbey, M. R. Pais, and L. C. Chow, "Effect of Surface
Material Properties and Surface Characteristics in Evaporative Spray
Cooling," Journal of Thermophysics and Heat Transfer, Vol. 6, 1992,
pp. 505-512.
80
8. M. R. Pais, L. C. Chow, and E.T. Mahefkey, "Surface Roughness and
Its Effects on the Heat Transfer Mechanism in Spray Cooling," Journal
of Heat Transfer -Transactions of the ASME, Vol. 114, 1992, pp.
211-219.
9. T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, "Pool Boiling of
n-Pentane, CFC-113, and Water under Reduced Gravity: Parabolic
Flight Experiments with a Transparent Heater," Journal of Heat
Transfer -Transactions of the ASME, Vol. 117, 1995, pp. 408-417.
10. M. Kato, Y. Abe, Y. H. Mori, and A. Nagashima, "Spray Cooling
Characteristics under Reduced Gravity," Journal of Thermophysics and
Heat Transfer, Vol. 9, 1995, No. 2, pp. 378-381.
11. K. A. Estes and I. Mudawar, "Correlation of Sauter Mean Diameter
and Critical Heat Flux for Spray Cooling of Small Surfaces,"
International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp.
2895-2996.
12. S. Chandra, M. D. Marzo, Y. M. Qiao, and P. Tartarini, "Effect of
Liquid-Solid Contact Angle on Droplet Evaporation," Fire Safety
Journal, Vol. 27, 1996, pp. 141-158.
13. J. Yang, L. C. Chow, and M. R. Pais, "Nucleate Boiling Heat Transfer
in Spray Cooling," Journal of Heat Transfer -Transactions of the
ASME, Vol. 118, 1996, pp. 668-671.
14. I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray
Cooling of a Square Surface," Journal of Heat Transfer -Transactions
of the ASME, Vol. 118, 1996, pp. 672-679.
81
15. J. E. Gonzalez and W. Z Black, "Study of Droplet Sprays Prior to
Impact on a Heated Horizontal Surface," Journal of Heat Transfer
-Transactions of the ASME, Vol. 119, 1997, pp. 279-287.
16. D. B. John, J. S. Clinton, and I. Mudawar, "Mapping of Impact and
Heat Transfer Regimes of Water Drops Impinging on a Polished
Surface," International Journal of Heat and Mass Transfer, Vol. 40,
1997, pp. 247-267.
17. K. Oliphant, B. W. Webb, and M. Q. Mcquay, "An Experimental
Comparison of Liquid Jet Array and Spray Impingement Cooling in
the Non-boiling Regime," Experimental Thermal and Fluid Science,
Vol. 18, 1998, pp. 1-10.
18. J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D. P. Rini, S. J. Lindauer
II, M. Bass, and P. J. Delfyett, "Thermal Management of Diode Laser
Arrays," Semiconductor Thermal Measurement and Management
Symposium, Sixteenth Annual IEEE, 2000, pp. 154 -160.
19. J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D.
Boyalakuntla, C. C. Hsieh, A. Jain, S. V. Narumanchi, K. Rebello, and
C. F. Wu, "MEMS-Based Thermal Management of Electronics Using
Spray Impingement," Proceedings of IPACK’01 The Pacific
Rim/ASME International Electronic Packaging, July 8-13, Kauai,
Hawaii, USA, 2001, pp. 1-12.
20. G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia,
and J. S. Nelson, "Measurement of Heat Flux and Heat Transfer
Coefficient During Continuous Cryogen Spray Cooling for Laser
82
Dermatologic Surgery," IEEE J. Sel. Top. Quantum Electron., Vol. 7,
2001, pp. 1013-1021.
21. B. M. Pikkula, J. H. Torres, J. W. Tunnel, and B. Anvari, "Cryogen
Spray Cooling: Effect of Droplet Size and Spray Density on Heat
Removal," Lasers in Surgery and Medicine, Vol. 28, 2001, pp.
103-112.
22. W. Jia and H. H. Qiu, "Experimental Investigation of Droplet
Dynamics and Heat Transfer in Spray Cooling," Experimental Thermal
and Fluid Science, Vol. 27, 2003, pp. 829-838.
23. L. Lin and R. Ponnappan, "Heat Transfer Characteristics of Spray
Cooling in a Closed Loop," International Journal of Heat and Mass
Transfer, Vol. 46, 2003, pp. 3737-3746.
24. S. -S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics
of Water and R-134a. Part I: Nucleate Boiling," International Journal
of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
25. S. -S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics
of Water and R-134a. Part II: Transient Cooling," International Journal
of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
26. J. H. Kim, S. M. You, and U. S. Choi, "Evaporative Spray Cooling of
Plain and Microporouscoated Surfaces," International Journal of Heat
and Mass Transfer, Vol. 47, 2004, pp. 3307-3315.
27. B. Horacek, K.T. Kiger, and J. Kim, "Single Nozzle Spray Cooling
Heat Transfer Mechanisms," International Journal of Heat and Mass
83
Transfer, Vol. 48, 2005, pp. 1425-1438.
28. A. G. Pautsch and T. A. Shedd, "Spray Impingement Cooling with
Single- and Multiple-nozzle Arrays. Part I: Heat Transfer Data Using
FC-72," International Journal of Heat and Mass Transfer, Vol. 48,
2005, pp. 3167-3175.
29. A. G. Pautsch and T. A. Shedd, "Spray Impingement Cooling with
Single- and Multiple-nozzle Arrays. Part II: Visualization and
Empirical Models," International Journal of Heat and Mass Transfer,
Vol. 48, 2005, pp. 3176-3184.
30. J. R. Rybicki and I. Mudawar, "Single-Phase and Two-Phase Cooling
Characteristics of Upward-Facing and Downward-Facing Sprays,"
International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp.
5-16.
31. C. C. Hsieh and S. C. Yao, "Evaporative Heat Transfer Characteristics
of a Water Spray on Micro-Structured Silicon Surfaces," International
Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 962-974.
32. S. -S. Hsieh and H. H. Tsai, "Thermal and Flow Measurements of
Continuous Cryogenic Spray Cooling," Archives of Dermatological
Research, Vol. 298, 2006, pp. 82-96.
33. B. Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian,
"Spray Angle Effect During Spray Cooling of Microelectronics:
Experimental Measurements and Comparison with Inverse
Calculations," Applied Thermal Engineering, Vol. 26, 2006, pp.
1788-1795.
84
34. J. E. Guinn and D. Banerjee, "Experimental Study of Nanofluids for
Droplet Cooling Applications Using Temperature Microsensors,"
Proceeding of the ASME International Mechanical Engineering
Congress and Exposition, No. IMECE2006-14101, Vol. 2, 2006, pp.
251-258.
35. S. -S. Hsieh and C. H. Tien, "R-134a Spray Dynamics and
Impingement Cooling in the Non-Boiling Regime," International
Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
36. A. Bansal and F.Pyrtle III, "Alumina Nanofluid for Spray Cooling
Enhancement," Proceeding of the ASME/JSME Thermal Engineering
Summer Heat Transfer Conference, No. HT2007-32485, Vol. 1, 2007,
pp. 797-803.
37. M. Visaria and I. Mudawar, "Effects of High Subcooling on
Two-Phase Spray Cooling and Critical Heat Flux," International
Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 5269-5278.
38. H. Bostanci, D. P. Rini, J. P. Kizito, and L. C. Chow, "Spray Cooling
With Ammonia on Microstructured Surfaces: Performance
Enhancement and Hysteresis Effect," Journal of Heat Transfer
-Transactions of the ASME, Vol. 131, 2009, 071401 (9 pp.).
39. J. Shen, J. A. Liburdy, D. V. Pence, and V. Narayanan, "Droplet
Impingement Dynamics: Effect of Surface Temperature during Boiling
and Non-boiling Conditions," Journal of Physics: Condensed Matter,
Vol. 21, 2009, 464133 (14 pp.)
40. R. Srikar, T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea,
85
and A. L. Yarin, "Nanofiber Coating of Surfaces for Intensification of
Drop or Spray Impact Cooling," International Journal of Heat and
Mass Transfer, Vol. 52, 2009, pp. 5814-5826.
41. G. Duursma, K. Sefiane, and A. Kennedy, "Experimental Studies of
Nanofulid Droplets in Spray Cooling," Heat Transfer Engineering, Vol.
30, 2009, Issue 13, pp. 1108-1120.
42. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, "Experimental Study on
the Effects of Spray Inclination on Water Spray Cooling Performance
in Non-boiling Regime," Experimental Thermal and Fluid Science, Vol.
34, 2010, pp. 933-942.
43. D. S. Zhu, J. Y. Sun, S. D. Tu, and Z. D. Wang, "Experimental Study
of Non-boiling Heat Transfer by High Flow Rate Nanofluids Spray,"
The 6th International Symposium on Multiphase Flow, Heat Mass
Transfer and Energy Conversion, Vol. 1207, 2010, pp. 476-482.
44. H. Bellerova, M. Pohanka, M. Raudensky, and A. A. Tseng, "Spray
Cooling by Al2O3 and TiO2 Nanoparticles in Water," Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm), 12th
IEEE Intersociety Conference, 2010, doi:10.1109/ITHERM.2010.
5501333.
45. S. a. d. Wiesche, U. Bardas, and S. Uhkötter, "Boiling Heat Transfer
on Large Diamond and SiC Heaters: The Influence of Thermal Wall
Properties," International Journal of Heat and Mass Transfer, Vol. 54,
2011, pp. 1886-1895.
46. H. Bellerova, A. A. Tseng, M. Pohanka, and M. Raudensky, "Spray
86
Cooling by Solid Jet Nozzles Using Alumina/Water Nanofluids,"
International Journal of Thermal Sciences, 2011, doi:10.1016/j.
ijthermalsci.2011.10.017.
47. H. Bellerova and M. Pohanka, "Spray Cooling by Multi-walled Carbon
Nanotubes and Fe Nanoparticles," International Journal of
Computational Methods and Experimental Measurements,
Computational Method and Experimental Measurements XV, 2011, pp.
293-304.
48. T. B. Chang, S. C. Syu, and Y. K. Yang, "Effects of Particle Volume
Fraction on Spray Heat Transfer Performance of Al2O3-Water
Nanofluid," International Journal of Heat and Mass Transfer, Vol. 55,
2012, Issue 4, pp. 1014-1021.
49. T. Okawa, K. Nagano, and T. Hirano, "Boiling Heat Transfer During
Single Nanofluid Drop Impacts onto A Hot Wall," Experimental
Thermal and Fluid Science, Vol. 36, 2012, pp. 78-85.
50. Yong-Zhen Technomaterial CO., LTD, Internet, Cited 06/08/'11,
Available from: http://www.qfnano.url.tw/product.html
51. C. S. C. Qiang and M. Susan, 2003, "The Effect of Dissolving Salts in
Water Sprays Used for Quenching a Hot Surface: Part 1- Boiling of
Single Droplets," Journal of Heat Transfer -Transactions of the ASME,
Vol. 125, pp. 326-332.
52. S. J. Palm, G. Roy and C.T. Nguyen, "Heat transfer enhancement with
the use of nanofluids in radial flow cooling systems considering
temperature-dependent properties," Applied Thermal Engineering, Vol.
87
26, 2006, pp. 2209-2218.
53. B. C. Pak and Y. I. Cho, "Hydrodynamic and heat transfer study of
dispersed fluids with submicron metallic oxide particles," Experimental
Heat Transfer, Vol. 2, 1998, pp. 151-170.
54. H. C. Brinkman, "The Viscosity of Concentrated Suspensions and
Solutions," Journal of Chemical Physics, Vol. 20, 1952, pp. 571-581.
55. A. Einstein, Investigation on the Theory of Brownian Motion, Dover,
New York, 1956.
56. H. U. Kang, S. H. Kim, and J. M. Oh, "Estimation of Thermal
Conductivity of Nanofluid Using Experimental Effective Particle
Volume," Experimental Heat Transfer, Vol. 19, No. 3, 2006, pp.
181-191.
57. E. Yamada and T. Ota, "Effect Thermal Conductivity of Dispersed
Materials," Wärme- und Stoffübertragung, Vol. 13, No. 1-2, 1980, pp.
27-37.
58. R. L. Hamilton and O. K. Crosser, "Thermal Conductivity of
Heterogeneous Two-Component Systems," Industrial & Engineering
Chemistry Fundamentals, Vol. 1, No. 3, 1962, pp. 187-191.
59. X. Zhang, H. Gu, and M. Fujii, "Effective thermal conductivity and
thermal diffusivity of nanofluids containing spherical and cylindrical
nanoparticles," Journal of Applied Physics, Vol. 100, 2006, 044325 (5
pp.)
60. R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, and P. K. Jain, "Pool
88
Boiling Characteristics of Multiwalled Carbon Nanotube (CNT) Based
Nanofluids over a Flat Plate Heater," International Journal of Heat and
Mass Transfer, Vol. 54, 2011, pp. 1289-1296.
61. C. Gerardi, J. Buongiorno, L. Hu, and T. McKrell, "Infrared
Thermometry Study of Nanofluid Pool Boiling Phenomena,"
Nanoscale Research Letters, Vol. 6, 2011, 232 (17 pp.)
62. S. Kline and F. A. McClintock, "Describing Uncertainties in
Single-Sample Experiments," Mechanical Engineering, Vol. 75, 1953,
pp. 3-8.
63. R. J. Moffat, "Describing the Uncertainties in Experimental Results,"
Experimental Thermal and Fluid Science, Vol. 104, 1988, pp. 3-17.
64. J. R. Taylor, An Introduction to Error Analysis, University Science
Books, Sausalito, California, 1997, pp. 49-67.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code