Responsive image
博碩士論文 etd-0827113-191922 詳細資訊
Title page for etd-0827113-191922
論文名稱
Title
應用於無線人體局域網感測節點之前端壓縮之實現
Implementation of Front-end Compression for a Wireless BAN Sensor Node
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-26
繳交日期
Date of Submission
2013-09-28
關鍵字
Keywords
人體局域網、霍夫曼編碼、曲率偵測、微控制器程式設計、FPGA數位電路設計
Body area network (BAN), Curvature compression, Huffman coding, Microcontroller coding, FPGA digital circuit design
統計
Statistics
本論文已被瀏覽 5773 次,被下載 588
The thesis/dissertation has been browsed 5773 times, has been downloaded 588 times.
中文摘要
隨著世界人口老化,居家照護及長期健康監測的需求也隨之增加。針對此種需求,無線人體局域網被提出並作為一種可行的方案。然而,此種長期監測的無線系統伴隨著可觀的功率消耗,其大部分來自於無線傳輸的部分。因此,本論文設計並評估了用以降低無線傳輸資料量的前端壓縮裝置。因其低複雜度和隨之而來的低系統實現功率,本論文選定有損壓縮的曲率偵測以及無損壓縮的霍夫曼編碼做為資料的前端壓縮裝置。應用於心電訊號壓縮的霍夫曼編碼系統使用了預先定義的編碼表。該架構透過極度簡化的編碼表提供2.16倍的壓縮倍率,相當接近於最佳編碼的2.53倍。本論文使用此預定義簡化編碼表在FPGA上實現霍夫曼編碼裝置並加以測試。此外本論文檢視了應用於心電訊號、肌電訊號以及步態訊號的曲率偵測並在微控制器上實現具有目標壓縮倍率追蹤機制的演算法且其目標倍率可隨使用者調整。曲率偵測系統應用於心電訊號時,在2.23倍的壓縮倍率下具有1.7%的均方根誤差百分比,在10倍的壓縮倍率下具有5.5%的均方根誤差百分比。最後,曲率偵測演算法也在無線傳收器上進行實現並驗證、展示其於人體局域網的適用性。依不同的處理器與傳收器裝置功率比,目標壓縮倍率為10的測試結果能節省3%到75%的功率。本論文提出的低複雜度演算法和其他演算法相比,能用更低的運算功率為系統帶來更優化的功率消耗。
Abstract
With the aging of the world population, the importance of long-term medical monitoring has increased along with the need for home care services for the elderly. To serve these needs, a body area network (BAN) is proposed as a possible solution. A system for long-term monitoring with wireless data transmission consumes a considerable amount of power, a significant portion of which is dissipated by the wireless transmitter. Therefore, front-end compression circuits are designed and evaluated in this study to reduce the required data rate of wireless transmission. Compression circuits based on curvature detection (providing lossy compression) and Huffman coding (lossless compression) are selected due to their low complexity and resulting low-power implementation. Huffman coding for ECG compression is designed using a pre-defined coding table. It is shown that truncating the table at a very shallow depth yields a compression factor (CF) of 2.16, very close to the optimum result of 2.53 using the complete table. This truncated table yields a compact hardware, implemented and tested in this study using a FPGA. Furthermore, the method of curvature detection for ECG, EMG and gait pattern compression is examined and an algorithm including target CF tracking is implemented in software on a microcontroller. The target CF is user programmable. Measured results demonstrate a CF of 2.23 and PRD error of 1.7%, and CF of 10 with PRD of 5.5% for ECG compression. Finally, the curvature algorithm is implemented on a wireless transceiver to demonstrate its suitability for BAN application. It is concluded that a CF of 10 yields system power reduction between 3% and 75% depending on the relative power consumption of the data processor and the transmitter. This power advantage is achieved by the low complexity algorithms described in this thesis, yielding low computation energy per compressed sample as compared with many other algorithms for ECG/EMG compression.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xi
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.2 Thesis organization 2
Chapter 2 WIRELESS FRONT-END COMPRESSION/RECONSTRUCTION SYSTEM 4
2.1 Motivation and background 4
2.2 Comparison of compression principles 5
2.2.1 Compressed sampling 5
2.2.2 Curvature detection 6
2.2.3 Other approaches: RLE, LZW, and Huffman 7
Chapter 3 CURVATURE DETECTION 9
3.1 Introduction 9
3.2 Metrics of the curvature compression system 10
3.3 Implementation 12
3.3.1 Compression 12
3.3.2 Reconstruction 14
3.4 Simulated results 15
Chapter 4 HUFFMAN COMPRESSION SYSTEM 20
4.1 Introduction 20
4.2 Implementation of Huffman compression system 22
4.2.1 Signal partitioning 22
4.2.2 Code book definition 23
4.3 Huffman encoder module hardware design 28
4.3.1 Differential stage 30
4.3.2 Huffman coding stage 30
4.3.3 FIFO stage 31
4.4 Huffman decoder module 32
4.4.1 FIFO stage 32
4.4.2 Huffman decoding stage and reconstruct stage 32
Chapter 5 IMPLEMENTATION AND MEASUREMENT RESULTS 34
5.1 Huffman compression system testing 34
5.1.1 Testing environment 34
5.1.2 Measurement with body-signal signal input 35
5.2 Curvature compression system testing 36
5.2.1 Testing environment 36
5.2.2 Measurement with body-signal signal input 38
5.2.3 Wireless transmission 46
5.3 Comparison 52
Chapter 6 CONCLUSION AND FUTURE WORK 56
References 58
參考文獻 References
[1] E. Monton, J.F. Hernandez, J.M. Blasco, T. Herve, J. Micallef, I. Grech, A. Brincat, and V. Traver, “Body area network for wireless patient monitoring,” IET Commun., vol. 2, no. 2, pp. 215-222, Feb. 2008.
[2] M. Patel and J. Wang, “Applications, challenges, and prospective in emerging body area networking technologies,” IEEE Commun., vol. 17, no. 1, pp. 80-88, Feb. 2010.
[3] Z. Zhang, H. Wang, A.V. Vasilakos, and H. Fang, “ECG-cryptography and authentication in body area networks,” Trans. Info. Tech. Biomed., vol. 16, no. 6, pp. 1070-1078, Nov. 2012.
[4] J. Bae, K. Song, H. Lee, H. Cho, and H.J. Yoo, “A low-energy crystal-less double-FSK sensor node transceiver for wireless body area network,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2678-2692, Nov. 2012.
[5] Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A. Wood, B.H. Calhoun, and B.P. Otis, “A batteryless 19µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 199-213, Jan. 2013.
[6] H. Mamaghanian, N. Khaled, D. Atienza,and P. Vandergheynst, “Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2456-2466, Sep. 2011.
[7] A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, and D.J. Allstot, “Compressed sensing system considerations for ECG and EMG wireless biosensors,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 2, pp. 156-166, Apr. 2012.
[8] R. Rieger and J.T. Taylor, “An adaptive sampling system for sensor nodes in body area networks,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, pp. 183-189, Mar. 2009.
[9] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet, “Components of a new research resource for complex physiological signals,” Circulation, vol. 101, no. 23, pp. e215-e220 [Circulation Electronic Pages;
http://circ.ahajournals.org/cgi/content/full/101/23/e215], June 13, 2000.
[10] F. Jager, A. Taddei, G.B. Moody, M. Emdin, G. Antolic, R. Dorn, A. Smrdel, C. Marchesi, and R.G. Mark, “Long-term ST database: A reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia,” Medical & Biological Engineering &Computing, vol. 41, no. 2, pp. 172-183, 2003.
[11] “SwimBS_emg_plux” in Open Signals (Sep. 2009) [currently offline]. Original site: http://www.opensignals.net/index.php?title=File:SwimBS_emg_plux.txt.
[12] Gait Dynamics in Neuro-Degenerative Disease Database (Nov. 2000) [online]. Available: http://physionet.org/physiobank/database/gaitndd/.
[13] J. Kim, M. Lee, and S. Lee, “A real-time ECG data compression and transmission algorithm for an e-health device,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2448-2455, Sep. 2011.
[14] T. Penzel, “The Apnea–ECG database,” Comput. Cardiol., vol. 27, pp.255–258, 2000.
[15] T.H. Corman, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms, Third edition. MIT Press and McGraw-Hill, 2009. ISBN: 9780262033848. Section 16.3 pp. 428-437.
[16] G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Eng. in Med. and Biol., vol. 20, no.3, pp. 45–50, May-June 2001.
[17] S. C. Roy, W. T. Krakow, B. Sacks, and W. E. Batchelor, “The design and verification of a VLSI chip for electrocardiogram data compression,” in Proc. 3rd Annu. IEEE Symp., Computer-Based Med. Syst., pp. 170–181, 1990.
[18] L. N. Bohs and R. C. Barr, “Prototype for real-time adaptive sampling using the fan algorithm,” Medical & Biological Engineering & Computing, vol. 26, no. 6, pp. 574-583 Nov. 1988.
[19] F. Chen, A. P. Chandrakasan, and V. Stojanović, “Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 744–756, Mar. 2012.
[20] L. Brechet, M.-F.Lucas, C. Doncarli, and D. Farina, “Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection,” IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2186- 2192, Dec. 2007.
[21] J. Cox, H. Fozzard, F. M. Nolle, and G. Oliver, “AZTEC: A preprocessing system for real-time ECG rhythm analysis,” IEEE Trans. Biomed. Eng., vol. 15, pp. 128-129, Apr. 1968.
[22] S. Jalaleddine, C. Hutchens, R. Strattan, and W. Coberly, “ECG data compression techniques – a unified approach,” IEEE Trans. Biomed. Eng., vol. 37, pp. 329-343, 1990.
[23] H. Garudadri, P. Baheti, S. Majumdar, C. Lauer, F. Masse, J. van deMolengraft, and J. Penders, “Artifacts mitigation in ambulatory ecg telemetry,” in Proc. IEEE Int. Conf. e-Health Networking Applications and Services, 2010, pp. 338–344.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code