Responsive image
博碩士論文 etd-0828103-155838 詳細資訊
Title page for etd-0828103-155838
論文名稱
Title
奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究
Treatment of Nitrate-Containing Soil by Nano-scale Iron Particles and Electrokinetic Remediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-23
繳交日期
Date of Submission
2003-08-28
關鍵字
Keywords
硝酸鹽、反應牆、電動力法、土壤、奈米鐵粉
Nitrate, Nano-sized iron, Soil, Electrokinetic remediation, Permeable reactive barrier
統計
Statistics
本論文已被瀏覽 5679 次,被下載 4762
The thesis/dissertation has been browsed 5679 times, has been downloaded 4762 times.
中文摘要
摘要
硝酸鹽和亞硝酸鹽是表面水體和地下水中常見的污染物,這些污染物質具有毒害性,對水體生物和人類的健康會造成影響。傳統方法上,生物脫硝法已廣泛應用於各種水體來移除氮氧化物,但生物脫硝所需的時間相對地比較長。近幾年來有研究指出,零價鐵可用來還原硝酸鹽。本研究之目的為探討電動力-奈米零價鐵粉牆系統去除硝酸鹽之能力,藉由實驗室自行合成的奈米鐵粉進行含硝酸鹽土壤之管柱實驗。首先,求得最佳的反應牆設置位置,接著並探討不同電位梯度條件、不同鐵粉牆體積、比較微米和奈米鐵粉、處理時間長短及電極極性轉換等參數對電動力-奈米鐵粉牆技術處理土壤中硝酸鹽污染之影響。此外,本研究自行合成之奈米鐵粉大小約介於50-80nm之間,其BET比表面積為37.83m2/g,與前人文獻資料類似;本研究亦發現,自行合成之奈米鐵粉其等電點為pH=7.3。
實驗反應系統係由Pyrex玻璃製之土壤管柱與陰、陽極槽室所組成,陰、陽極皆為石墨棒,並由電源供應器提供穩定的直流電。試驗結果顯示,距陽極槽5公分處為最佳奈米鐵粉牆設置位置,於實驗過程中,隨著奈米鐵粉牆體積的增大,可提高奈米鐵粉結合電動力法整治硝酸鹽污染之土壤的降解效應;未作電極極性轉換的硝酸鹽移除率為7.21 %,而有電極極性轉換的硝酸鹽移除率為6.57 %;若以降解效果來看,有電極極性轉換的硝酸鹽降解率為85.81 %,而未作電極極性轉換的硝酸鹽降解率為81.13 %;而以處理時間來說,處理期程為3天的實驗硝酸鹽降解率已可達89.20 %,隨著處理期程的增加,使降解率提高,處理時間延長為6天,硝酸鹽降解率可高達98.06 %,而處理時間若再延長至10天,則硝酸鹽降解率可達98.66 %。以電位梯度條件來說,在此處理系統中,隨著施用的電位梯度提高,降解的效果較佳,較能突顯出電動力-奈米鐵粉牆的去除效果。此外,本研究亦發現,經長時間反應後,奈米鐵粉牆會有逐漸擴散或消失之現象,亞鐵離子因而隨之傳輸至土體各區域。
Abstract
Abstract

A novel process of combining electrokinetic remediation and nano-sized iron wall was used for studying its effectiveness of treating nitrate-containing soil. Nitrates and nitrites are commonly found in surface water and groundwater. These substances, in general, could pose a threat to both organisms in the water bodies and human health. Traditionally, nitrogen oxides in various water bodies are treated by biological denitrification processes. However, it would take a longer time to yield a satisfactory result as compared with physicochemical processes. In recent years, permeable reactive barriers (PRBs) using zero-valent iron have been successfully used for degradation of various compounds including nitrates. Electrokinetic processing (EK) also is considered as an effective in-situ technology for removing both inorganic and organic substances from the treatment zone. In this work, the synthesized nano-scale iron particles were incorporated into a PRB, which was further combined with EK to form a novel process for the degradation of nitrates. Various operating parameters were studied in this work. The nano-sized iron particles were determined to be ranging from 50-80nm in size and having specific surface area of 37.83m2. The isoelctric point of these nanoparticles was found to be at pH 7.3. Experimental results have shown that the best location of the iron wall was 5cm from the anode reservoir. Also, the optimal treatment time would be six days in this study. The treatment efficiency was found to increase with increasing dose of nano-sized iron particles in the PRB. Operating with the polarity reverse would slightly increase the overall treatment efficiency as compared with the case of no polarity reverse (92.38% versus 88.34%). An electric gradient of 1.5V/cm was determined to be the optimal electric field strength in this study. In this work, it was also found that 2.5g nano-scale iron particles outperformed 20g micro-scale iron particles (75-150µm) in terms of nitrate degradation. In a study of using an extended treatment time up to 20 days, the black colored iron wall would fade away becoming a rusty plume toward the cathode as the treatment time elapsed. Furthermore, the Fe2+ concentration was elevated throughout the soil column after the 20-day treatment. Therefore, it is evident that nano-sized iron particles would migrate when they are subjected to EK. Based on the research findings obtained, the novel process employed in this study was found to be an effective one for in-situ treatment of nitrate-containing soil.
目次 Table of Contents
目錄
聲明切結書 i
謝誌 ⅱ
摘要 ⅲ
Abstract ⅳ
目錄 ⅵ
表目錄 x
圖目錄 xi
照片目錄 xiv
第一章 前言 1
1.1 研究緣起 1
1.2研究目的 4
1.3研究內容 4
第二章 文獻回顧 6
2.1硝酸鹽(NO3-)性質及對人體的危害 6
2.1.1硝酸鹽(NO3-)的來源 6
2.1.2硝酸鹽(NO3-)對人體的危害 6
2.2 硝酸鹽相關法規限值 7
2.3 硝酸鹽相關處理方法 9
2.4 零價鐵的還原能力 13
2.4.1 零價鐵的還原機制 13
2.4.2 影響鐵還原能力之因素 16
2.4.3 零價鐵還原硝酸鹽 18
2.5 奈米科技發展 19
2.6 奈米粒子簡介 20
2.6.1 金屬奈米粒子之性質 21
2.6.2 金屬奈米粒子之製備 23
2.6.2.1 化學還原法簡介 25
2.6.2.2 奈米粒子成核原理 26
2.7 奈米科技與環境 26
2.8 電動力法 26
2.8.1電動力法之傳輸機制 28
2.8.2電動力法之破壞機制 29
2.8.3電動力法復育污染土壤之影響因子 30
2.9 透水性反應牆 32
2.9.1透水性反應牆之原理 32
2.9.2零價鐵之相關理論 33
2.10 電動力法及透水性反應牆組合技術 36第三章 實驗材料與方法 38
3.1實驗材料 38
3.1.1 土壤樣品來源與前處理 38
3.1.2 試藥及材料 38
3.2實驗設備 39
3.2.1 電動力法-奈米鐵粉牆處理系統 39
3.2.2 其他儀器 42
3.3 研究架構 43
3.4 土壤樣品及其特性分析 48
3.4.1粒徑分佈 48
3.4.2 比重 48
3.4.3 pH值 50
3.4.4 含水份 51
3.4.5有機物質含量 52
3.4.6灼燒減量 52
3.4.7 陽離子交換容量 52
3.4.8 比表面積 53
3.4.9 土壤中鐵的含量 54
3.5 奈米鐵粉配製 54
3.6 人工污染飽和層配製及管柱裝填 55
3.6.1人工污染飽和層配製前處理程序 55
3.6.2污染土管柱裝填程序 55
3.7反應前後之分析及操作過程之監測 55
3.7.1反應前後之分析項目 55
3.7.2 操作過程之監測項目 57
第四章 結果與討論 57
4.1土壤樣品基本性質分析 58
4.2 表面特性分析 59
4.2.1 比表面積測定 59
4.2.2 表面型態觀察 60
4.2.3 等電位點之量測 62
4.3 電動力-奈米鐵粉牆管柱處理系統 64
4.3.1 標的污染物 64
4.3.2 奈米鐵粉牆最適設置位置探討 65
4.3.3 各操作因子對硝酸鹽降解率之影響 74
4.3.3.1 奈米鐵粉牆體積對硝酸鹽降解率之影響 74
4.3.3.2 電極極性轉換對硝酸鹽降解率之影響 80
4.3.3.3 處理時間對去除效率的影響 85
4.3.3.4 市售鐵粉與奈米鐵粉對去除率之影響 90
4.3.3.5 施用不同電位梯度條件對去除率之影響 92
4.3.4 奈米鐵粉移動性追蹤 97
4.4 最佳操作條件評析 104
第五章 結論與建議 106
5.1 結論 106
5.2 建議 108
參考文獻 109
附錄 實驗數據 119

表目錄
表2.1 外國及國際組織對飲用水中硝酸鹽濃度的規定 8
表2.2 我國飲用水及地下水中NO3-及NO2-之相關法規限值 8
表2.3 各種處理方式於脫氮程序的影響 10
表2.4 我國推動奈米科技之經費概況 20
表2.5 球形顆粒之比表面積與表面原子數隨顆粒直徑變化對照表 21
表3.1 電動力-奈米鐵粉牆試驗之實驗設計表 46
表3.2 不同溫度下的水之相對密度及校正因子K值 50
表4.1 土壤基本性質 58
表4.2 奈米鐵粉之比表面積、孔隙體積及平均孔徑 59
表4.3 不同鐵粉牆設置位置下之處理結果比較 73
表4.4 不同鐵粉牆體積條件下處理結果比較 79
表4.5電極極性轉換(Test 7)與無電極極性轉換(Test 2)之處理結果比較 84
表4.6 不同處理時間條件下之處理結果比較 89
表4.7電動力法結合鐵粉牆(Test 5)為奈米級鐵粉,Test 15與Test
10為微米級鐵粉)處理硝酸鹽之結果比較 91
表4.8 不同電位梯度條件下經處理後之處理結果比較 96
表4.9 電動力-奈米鐵粉牆技術處理硝酸鹽污染之含水層土壤處理
效率 105

圖目錄
圖2.1 鐵與硝酸鹽反應之電位對pH關係圖 16
圖2.2 表面原子數與粒徑之關係 22
圖2.3 理論計算各種球狀奈米金屬在水溶液中之吸收光譜 24
圖2.4 電動力原理示意圖 27
圖2.5 透水性反應牆示意圖 33
圖3.1 電動力-奈米鐵粉反應牆處理系統實驗設備圖 39
圖3.2 研究架構流程圖 43
圖3.3 電動力-奈米鐵粉牆試驗之流程圖 44
圖4.1美國農業部(USDA)一般土壤質地分類圖 57
圖4.2 奈米鐵粉對pH值之界達電位圖 63
圖4.3 土壤未經電動力-奈米鐵粉牆組合技術處理前硝酸鹽污染
濃度示意圖 64
圖4.4 土壤經電動力-奈米鐵粉牆組合技術處理後之硝酸鹽污染
濃度示意圖 65
圖4.5 不同鐵粉牆設置位置下經電動力-奈米鐵粉牆技術處理後
之土壤中硝酸鹽濃度分布 67
圖4.6 不同鐵粉牆設置位置下隨處理時間累積移入陽極槽的硝
酸鹽質量 67
圖4.7 不同鐵粉牆位置條件下隨處理時間累積移入陰極槽的硝
酸鹽質量 69
圖4.8 不同鐵粉牆設置位置下電流密度隨處理時間之變化情形 69
圖4.9 不同鐵粉牆設置位置下硝酸鹽莫耳流率隨處理時間之變化 71
圖4.10 不同鐵粉牆設置位置下經處理後土壤內部pH分佈圖 71
圖4.11 不同鐵粉牆體積下經電動力-奈米鐵粉牆技術處理後土壤中之硝酸鹽殘留分布 75
圖4.12 不同鐵粉牆體積下隨處理時間累積移入陽極槽的硝酸鹽質量 75
圖4.13 不同鐵粉牆體積下隨處理時間累積移入陰極槽的硝酸鹽質量 77
圖4.14 不同鐵粉牆體積下電流密度隨處理時間之變化情形 77
圖4.15 不同鐵粉牆體積下累積電滲透流流量隨處理時間之變化 78
圖4.16 電極極性轉換與否經電動力-奈米鐵粉牆技術處理後土壤中之硝酸鹽殘留分佈之影響 81
圖4.17 電極極性轉換與否經電動力-奈米鐵粉牆技術處理後含水層土壤內部pH分佈圖 82
圖4.18 電極極性轉換條件下含水層土壤中操作電流隨處理時間之
變化情形 83
圖4.19 不同處理天數經電動力-奈米鐵粉牆技術處理後土壤中之硝
酸鹽殘留率分佈情形 86
圖4.20 不同處理天數下隨處理時間累積移入陽極槽的硝酸鹽質量 88
圖4.21 不同處理天數下隨處理時間累積移入陰極槽的硝酸鹽質量 88
圖4.22 不同電位梯度條件下經電動力-奈米鐵粉牆技術處理後土壤中之硝酸鹽殘留率分佈情形 93
圖4.23 不同電位梯度條件下隨處理時間累積移入陽極槽的硝酸鹽
質量 93
圖4.24 不同電位梯度條件下隨處理時間累積移入陰極槽的硝酸鹽
質量 95
圖4.25 不同電位梯度條件下累積電滲透流量隨處理時間的變化圖 95
圖4.26 奈米鐵粉牆移動性追蹤試驗經電動力-奈米鐵粉牆技術處理
後土壤中之硝酸鹽殘留率分佈情形 99
圖4.27 奈米鐵粉牆移動性追蹤試驗之隨處理時間累積移入陽極槽
的硝酸鹽質量 100
圖4.28 奈米鐵粉牆移動性追蹤試驗之隨處理時間累積移入陰極槽
的硝酸鹽質量 101
圖4.29 奈米鐵粉牆移動性追蹤試驗之電流隨處理時間之變化圖 101
圖4.30 奈米鐵粉牆移動性追蹤試驗經電動力-奈米鐵粉牆技術處理
後之亞鐵離子質量分佈情形 103
圖4.30 奈米鐵粉牆移動性追蹤試驗經電動力-奈米鐵粉牆技術處理後之總鐵質量分佈情形 103

照片目錄
照片3.1 電動力-奈米鐵粉反應牆處理實驗管柱系統 41
照片4.1 奈米鐵粉未參與反應前之SEM圖 61
照片4.2 奈米鐵粉參與反應後之SEM圖 61
照片4.3 奈米鐵粉牆移動性追蹤試驗反應第一天之情形 97
照片4.4 奈米鐵粉牆移動性追蹤試驗反應第十天之情形 98
照片4.5 奈米鐵粉牆移動性追蹤試驗反應第二十天之情形 98
參考文獻 References
參考文獻
1. 嚴式清,“台灣土壤污染之研究概況”,工業污染防治,第6期,第10~17頁(1983)。
2. 歐陽喬輝,“環境污染與防治概論”,教育部環境保護小組,台北(1992)。
3. 環保署教育宣導網頁
http://www.epa.gov.tw/education/abc/1-08.html
4. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron”, Water Research, Vol. 32, No. 8, pp. 2257-2264(1998).
5. 賴芳林,“探討亞硝酸鹽的健康危害”,環境檢驗雙月刊,第41期,第43~45頁(2002)。
6. 行政院農委會農業統計年報網站
http://www.coa.gov.tw/statistic/newyearbook/index.htm
7. 美國環保署土壤及地下水污染網站
http://www.epa.gov/safewater/contaminants/dw_contamfs/nitrates
8. http://www.epa.gov.tw ~地下水污染監測基準、地下水污染管制基準、飲用水水質標準、飲用水水源水質標準。
9. Hu, H. Y., M. Iwasaki, K. Fujie, N. Goto, T. Kasakura, Y. M. He, and T. Tsubone, “Chemical Reduction of Nitrate and Nitrite in Aquatic Solution by Zero-Valent Metals”, Proceedings of Asian Waterqual ’99-7th IAWQ Asia-Pacific Regional Conference, pp. 553-558, 18-20 Oct., Taipei (1999).
10. Choe, S., Y. Y. Chang, K. Y. Hwang., and J. Khim, “Kinetics of Reduction Denitrification by Nanoscale Zero-Valent Iron”, Chemosphere, Vol. 41, No. 8, pp. 1307~1311 (2000).
11. Siantar, D., C. G. Schreier, C. S. Chou., and M. Reinhard., “Treatment of 1,2-Dibromo-3-Chloroproprane and Nitrate Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysts”, Water Research, Vol. 30, No. 10, pp. 2315~2322 (1996).
12. Eid, N., W. Elshorbagy, D. Larson., and D. Slack., “Electro-migration of Nitrate in Sandy Soil”, Journal of Hazardous Materials, Vol. B79, pp. 133-149 (2000).
13. Chew, C. F, and T. C. Zhang, “In-Situ Remediation of Nitrate-Contaminated Ground Water by Electrokinetic/Iron Wall Processes”, Water Science and Technology, Vol. 38, No. 7, pp. 135~142 (1998).
14. http://www.vghtpe.gov.tw/~tcfund/information/20010601_7.htm
15. http://ae-organic.ilantech.edu.tw/consumer/consumer-3-1.htm
16. http://www.kepu.com.cn/big5/lives/pesticide/area/are506.html
17. Hill, M. J., ”Nitrates and Nitrites in Food and Water” (1991).
18. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 4th ed., Wiley, pp. 416~428, New York (1980).
19. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, Reuse”, pp. 691-696. (1991).
20. Fanning, J. C. , “The Chemical Reduction of Nitrate in Aqueous Solution”, Coordination Chemistry Reviews, Vol. 199, pp. 159-179 (2000).
21. Reddy, K. J. and Lin, J. “Nitrate Removal from Groundwater Using Catalytic Reduction”, Water Research, Vol. 34, No. 4, pp. 995-1001 (1999).
22. Kapoor, A. and Viraraghavan, T. “Nitrate Removal from Drinking Water - Review”, Journal of Environmental Engineering, Vol. 123, No. 4, pp. 371-380 (1997).
23. Luk, G. K. and Au-Yeung, W. C., “Experimental Investigation on the Chemical Reduction of Nitrate from Groundwater”, Advances in Environmental Research, Vol. 6, pp. 441~453 (2002).
24. Cheng, S. F. and S. C. Wu, “The Enhancement Methods of the Degradation of TCE by Zero-Valent Metal”, Chemosphere, Vol. 41, pp. 1263~1270 (2000).
25. Siebert, J., T. Holdsworth, B. Heuel-Fabianek, E. Wort-mann, and G. Swanson, “Evaluation of Fe0-Reactive Media Treatment Systems”, Contaminated Soil 2000, Thomas Telford Ltd., London, pp. 583-586 (2000).
26. Klein, R. and H., Schad, “Results from a Full Scale Funnel-and –Gate System at the BEKA Site in Tübingen(Germany) Using Zero-Valent Iron”, Contaminated Soil 2000, Thomas Telford Ltd., London, pp. 917~923 (2000).
27. 程淑芬,“斗閘式現地地下水污染復育技術之探討-含氯有機化合物以零價金屬反應透水牆還原脫氯之研究”,國立台灣大學環境工程研究所博士論文,台北市(2000)。
28. 蔡璨樺,“零價鐵技術祛除三氯乙烯之研究”,國立中央大學環境工程研究所碩士論文,中壢市(2000)。
29. Zawaideh, L. L., and T. C. Zhang, “The Effect of pH and Addition of an Organic Buffer(HEPES)on Nitrate Transformation in Fe0-Water System”, Water Science and Technology, Vol. 38, No. 7, pp. 107~115 (1998).
30. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689~2695 (1997).
31. Cao, L., L. Wei, Q. Huang, L. Wang, and S. Han, “Reducing Degradation of Azo Dye by Zero-Valent Iron in Aqueous Solution”, Chemosphere, Vol. 38, Vol. 3, pp. 565~571 (1999).
32. Weber, E. J., “Iron-Medicated Reductive Transformations: Investigation of Reaction Mechanism”, Environmental Science and Technology, Vol. 30, No. 2, pp. 716~719 (1996).
33. David, R. B., J. C. Timothy, and S. M. Valipuran, “Sorption of Trichloroethylene and Tertachoroethylene in a Batch Reactive Metallic Iron-Water System”, Environmental Science & Technology, Vol. 29, No. 11, pp. 2850~2855 (1995).
34. Timothy, L. J., M. S. Michelle, and G. T. Paul, “Kinetics of Halogenated Organic Compound Degradation by Iron Mental”, Environmental Science & Technology, Vol. 30, pp. 2634~2640 (1996).
35. 廖志祥,“零價鐵金屬存在下H2O2/UV程序對自然水之同時脫氮與礦化”,行政院國科會專題研究成果報告,計畫編號:NSC 89-2211-E-041-013 (2000)。
36. 劉祥麟,”台灣奈米科技研究體系之簡介”,物理雙月刊,第23期,6卷,第599頁(2001)。
37. 龔建華,”影響世界改變未來你不可不知的奈米科技”,世茂出版社,台北縣(2002)。
38. 尹邦耀,”nano奈米時代”,五南圖書出版股份有限公司,台北市(2002)。
39. 莊萬發,”超微粒子理論應用”,復漢出版社,台南市(1996)。
40. Fenlder, H. J., “Atomic and Molecular Clusters in Membrane Mimetic Chemistry”, Chemical Reviews, Vol. 87, pp. 877~899 (1987).
41. 王鉦源,“以化學還原法製備奈米級銀鈀微粉”,國立成功大學化學工程學系碩士論文,台南市(2002)。
42. Selby, K., M. Vollmer, J. Masui, V. Kersin, W. De Heer, and W. Knight, “Surface Plasma Resonances in Free Metal Clusters”, Physical Review B, Vol. 40, No. 8, pp. 5417~5427 (1989).
43. 葉伊同,“特殊金屬奈米金屬結構材料”, 國立中正大學化學研究所碩士論文,民雄鄉(1998)。
44. 張仕欣、王崇人, “金屬奈米粒子的吸收光譜”, 化學期刊, 第56期3卷, 第209頁(1998)。
45. 馬遠榮,“奈米科技”,商周出版,台北市(2002)。
46. 魏明芬,“磁性金屬氧化物奈米粒的製備與鑑定”,國立中正大學化學研究所碩士論文,民雄鄉(2002)。
47. 何佩芬,“製備大小與形狀選擇性的鈀金屬奈米粒子”,國立中正大學化學研究所碩士論文,民雄鄉(2002)。
48. 李懋強,“超細粉體的化學合成”,中國粉體技術,第六卷專輯,第21~29頁(2000)。
49. 韋文誠,“奈米陶瓷粉體之特性及奈米結構應用概況”,化工技術,第九卷,第九期,第126~131頁(2001)。
50. Glavee, G. N., K. J. Klabunde, C. M. Sorensen, and G. C. Hadlipanayis, “Chemistry of Borohydride Reduction of Iron(Ⅱ) and Iron(Ⅲ) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders”, Inorganic Chemistry. Vol. 34, No. 1, pp. 28~35 (1995).
51. “Hazardous Waste Clean-Up Information”, http://www.cluin.org, (2000).
52. Vane, M. L. and G. M. Zang, “Effect of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-osmotic Permeability: Implications for Electro-kinetic Soil Remediation Processes”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 1~22 (1997).
53. U.S. EPA, “Superfund Innovative Technology Evaluation Program”, Technology Profiles 10th Ed. Vol. 1, Demonstration Program, EPA/540/R99/500a, pp. 194-195; 202-203; 224-225 (1999).
54. Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bicka, and R. Parker, “Electrokinetic Remediation: Basic and Technology Status”, Journal of Hazardous Materials, Vol. 40, No. 2, pp. 117-137 (1995).
55. Shapiro, A. P., P. C. Renaud, and R. F. Probstein, “Preliminary Studies on the Removal of Chemical Species from Saturated Porous Media by Electroosmosis”, Physicochemical Hydrodynamics, Vol. 11, No. 56, pp. 785-802 (1989).
56. Freeze, R. A. and J. A. Cherry, Groundwater, Prentice-Hall, Inc. Englewood Cliffs, N. J. (1967).
57. Horng, J. J., “A Model Study of Ionic Transport and Its Role in Electrokinetic Treatment of Contaminated Soils”, Ph.D. Thesis, University of Washington,Seattle (1993).
58. 陳致谷、張添晉,“土壤污染生物復育技術之應用與展望”,工業污染防治,第53期,第113-138頁(1995)。
59. Azzam, O. M., M. A. Tarazi, and Y. Tahboub, “Anodic Destruction of 4-Chlorophenol Solution”, Journal of Hazardous Materials, Vol. 75, No. 2, pp. 99-113 (1999).
60. Sudoh, M., T. Kodera, K. Sakai, J. Q. Zhang, and K. Koide, “Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent”, Journal of Chemical Engineering of Japan, Vol. 19, No. 6, pp. 513-518 (1986).
61. Brillas, E. and R. Sauleda, “Degradation of 4-Chlorophenol by Anode Oxidation, Electro-Fenton, Photoelectro-Fenton, and Peroxi-Coagulation Processes”, Journal of Electrochemical Society, Vol. 45, No. 3, pp. 759-765 (1998).
62. Yeager, E., “Electrocatalysts for O2 Reduction”, Electrochemica Acta, Vol. 29, No. 11, pp. 1527-1537 (1984).
63. Oloman, C. and A. P. Watkinson, “Hydrogen Peroxide Production in Trickle-Bed Electrochemical Reactors”, Journal of Electrochemical Society, Vol. 9, No. 1, pp. 117-128 (1979).
64. Acar, Y. B., J. T. Hamed, A. N. Alshawabkeh, and R. J. Gale, “Removal of Cadmium (II) from Saturated Kaolinite by the Application of Electrical-Current”, Geotechnique, Vol. 44, Iss. 2, pp. 239-254 (1994).
65. Baraud, F., S. Tellier, and M. Astruc, “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH”, Journal of Hazardous Materials, Vol. 64, No. 3, pp. 263-281 (1999).
66. Hamed, J. T. and A. Bhadra, “Influence of Current Density and pH on Electrokinetics”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 279-294 (1997).
67. 薩支高、徐文逢,“環境變因對鎘污染土壤電動法移除效率影響”,第十四屆廢棄物處理技術研討會論文集,第2-79 ~ 2-86頁,中壢市(1999)。
68. Shin, I. W., “Major Ion and Electrical Potential Distribution in Soil under Electrokinetic Remediation”, Environmental Science &Technology,Vol. 35, No. 19, pp. 2151-2155 (2001).
69. 劉奇岳,“電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討”,國立中山大學環境工程研究所碩士論文,高雄市(1999)。
70. 洪肇嘉、吳惠銘、紀吉鴻、陳錕榮,“電動力復育鉻、鎘、鉛污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,第312~318頁,11月21-22日,高雄市(1998)。
71. NATO/CCMS Pilot Study, “Treatment Walls and Permeable Reactive Barriers”, Number 229, EPA 542-R-98-003 (1998).
72. U.S. EPA, “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers”, Office of Solid Waste and Emergency Response, Technology Innovation Office,Washington,DC (2002).
73. Day, S. R., “Geotechnical Techniques for the Construction of Reactive Barriers”, Journal of Hazardous Materials, Vol. 67, No. 3, pp. 285-297 (1999).
74. Su, C. and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products”, Environmental Science &Technology, Vol. 33, No. 1, pp. 163-168 (1999).
75. Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Tricholroethylene and Tetracholroethylene in a Batch Reactive Metallic Iron-Water System”, Environmental Science &Technology, Vol. 29, No. 11, pp. 2850-2855 (1995).
76. U.S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents”, U.S. Army Corps of Engineers, DG 1110-345-11 (1997).
77. Matheson, L. J. and P. G. Tratnyek, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science &Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
78. Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis”, Water Research, Vol. 30, No. 10, pp. 2315-2322 (1996).
79. Helland, B. R., P. J. J. Alvarez, and J. L. Schnoor, “Reductive Dechlorination of Carbon Tetrachloride with Elemental Iron”, Journal of Hazardous Materials, Vol. 41, No. 2, pp. 205-216 (1995).
80. Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron”, Environmental Progress, Vol. 16, No. 2, pp. 137-143 (1997).
81. Ho, S. V., C. Athmer, P. W. Sheridan, B. M. Hughes, R. Orth, D. Mckenzie, P. H. Brodsky, A. M. Shapiro, T. M. Sivavec, J. Salvo, D. Schultz, R. Laudis, R. Griffith, and S. Shoemaker, “The Lasagna® Technology for In Situ Soil Remediation. 2. Large Field Test”, Environmental Science &Technology, Vol. 33, No. 7, pp. 1092-1099 (1999).
82. 薛威震,” 利用電動力法結合陽離子交換樹脂反應牆現地整治受鉛銅污染土壤之研究”,國立中山大學環境工程研究所碩士論文,高雄市(1999)。
83. 陳政德,“電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究”,國立中山大學環境工程研究所碩士論文,高雄市(2000)。
84. 洪源駿,“電動力-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址”,國立中山大學環境工程研究所碩士論文,高雄市(2002)。
85. ASTM, “Standard Test Method for Specific Gravity of Soils”, ASTM D854-83 (1983).
86. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.60T (1995)。
87. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T (1995)。
88. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539-579, Elsevier Scientific (1980).
89. Head, K. H., Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests, Pentech Press Limited, Plymouth, Devon, p. 249 (1980).
90. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202. 60A (1995)。
91. Kota, S., “Factor Limiting Intrinsic Bioremediation in Gasoline Contaminated Aquifer”, Ph.D. Dissertatiion, North Carolina State University, Raleigh, NC, USA (1998).
92. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, Reuse”, p. 1045 (1991).
93. Wang, C. B., and W. X. Zhang, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs”, Environmental Science &Technology, Vol. 31, No. 7, pp. 2154-2156 (1997).
94. 袁菁、翁誌煌、江姿幸,“零價鐵粉提昇電動力法處理四氯乙烯污染土壤之初步研究”,第十七屆廢棄物處理技術研討會論文集光碟,11月29-30日,台北市(2002)。
95. 陳躍升,“利用砂箱實驗探討電動力法處理受酚污染土壤之性質二維變化”,國立中山大學環境工程研究所碩士論文,高雄市(2002)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code