Responsive image
博碩士論文 etd-0828106-140844 詳細資訊
Title page for etd-0828106-140844
論文名稱
Title
導波經焊接管鞋之波式轉換現象
The mode conversion of the guided wave by a welded pipe shoe
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
244
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-10
繳交日期
Date of Submission
2006-08-28
關鍵字
Keywords
導波、管鞋、缺陷、非破壞性檢測
Ansys, guided wave, pipe shoe, crack, NDT
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
石化廠中的管線檢查是很重要的,一般非破壞檢測法如傳統超音波點對點的量測,雖可檢測出管壁厚度的變化,但要使用此方法檢查工廠內動輒綿延幾公里的管線幾乎不可行。導波檢測法克服了上述問題,此技術運用萊姆波收發合置系統,不僅可做長距離大範圍的管線檢測,還可根據回波訊號判別出缺陷位置所在。
但由於頻散現象與波式轉換等複雜問題,造成此技術於實際檢測中的不易,本文探討焊接管鞋對導波波傳的影響,包含實際量測6吋碳鋼管的回波訊號與使用有限元素法模擬波傳現象,研究頻率範圍為18~ 32 kHz,並且使用萃取模態法分析波式轉換模態,研究發現T(0,1)模態傳經管鞋時其能量會洩漏至管鞋中,此洩漏能量最後導致回波訊號的複雜與判讀困難。
Abstract
The detection of corrosion in pipes is of major importance to the oil and chemical industries. Current methods involving point-by-point inspection are available for the detection of general wall loss associated with corrosion, but unfortunately the current methods tend to be very slow, limited to single positions, thus make the inspection of the kilometers of pipeline typically found in industrial plants virtually impossible. Ultrasonic guided waves provide an attractive solution to this problem because they can be excited at one location on the pipe and will propagate many meters along the pipe, returning echoes indicating the presence of corrosion or other pipe features.
Nevertheless such techniques still have many practical difficulties in application due to the complex characteristics of guided waves such as dispersion and mode conversion. This thesis studies guided waves influenced by the welded supports, a.k.a. pipe shoe. A research of the reflection of mode-converted guided waves from pipe shoes on pipes in the frequency range 18-32 kHz has been carried out. Measurements are made on a 6 inch bore diameter, 7.1mm wall thickness pipe. The axisymmetric symmetric T(0,1) mode is incident on the pipe shoes and the mode-converted guided waves are received in reflection. In parallel, a finite element model is used to simulate the experiments by using Ansys. Received signals are separated into single-mode with a mode extraction technique. This research reveals that when T(0,1) propagates through the pipe shoe, the energy of T(0,1) passes into the pipe shoe. The leakage phenomenon results in the complexity and misinterpretation of the echo.
目次 Table of Contents
目錄
目錄 i
表目錄 v
圖目錄 vi
中文摘要 xi
英文摘要 xii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3研究方法 7
第二章 基本理論 9
2.1導波在圓管中傳播的波動方程式 9
2.1.1縱向模態 11
2.1.2扭矩模態 12
2.1.3撓曲模態 12
2.2頻散曲線 13
2.3波形結構 16
2.4波式轉換 17
2.5有限元素法 18
2.5.1應力平衡方程式 18
2.5.2邊界條件 18
2.5.3應變-位移關係 19
2.5.4應力-應變關係 19
2.5.5位能平衡方程式 20
2.5.6三度空間的應力分析 20
2.5.7元素的徑度 22
2.6動態分析 23
第三章 實驗架構與量測 35
3.1實驗儀器設備 35
3.2實驗步驟 38
3.3實驗結果與討論 39
3.3.1實驗一 39
3.3.2實驗二 41
第四章 模擬分析 58
4.1 Ansys有限元素軟體 58
4.2激發L(0,2)模態 60
4.2.1建構有限元素模型 61
4.2.2負載與求解 62
4.2.3提取與分析結果 63
4.3模擬L(0,2)模態經缺陷之波傳情形 66
4.3.1建構有限元素模型(25 %周向缺陷) 66
4.3.2提取與分析結果 66
4.3.3模擬L(0,2)模態傳經50 %周向缺陷 69
4.3.4各模態的反射係數 69
4.4激發T(0,1)模態 71
4.4.1建構有限元素模型 71
4.4.2負載與求解 71
4.4.3提取與分析結果 71
4.4.4模擬T(0,1)模態傳經25 %周向缺陷 73
4.4.5模擬T(0,1)模態傳經50 %周向缺陷 75
4.4.6各模態的反射係數 76
第五章 焊接管鞋之模擬分析 110
5.1模擬T(0,1)傳經焊接管鞋之波傳情形 110
5.2探究異常回波群 112
5.3管鞋內之波傳現象 113
5.3.1管鞋內的板波模態 113
5.3.2管鞋內的波傳路徑 115
5.4焊接管鞋對缺陷訊號的影響 116
5.4.1缺陷位於管鞋後方之訊號判讀 116
5.4.2缺陷位於管鞋前方與上方之訊號判讀 117
第六章 結論與建議 148
6.1結論 148
6.2未來展望 149
參考文獻 150
附錄A:實驗一實驗結果 156
附錄B:實驗二實驗結果 164
附錄C:焊接管鞋管模擬結果(6吋管) 172
附錄D:焊接管鞋管模擬結果(3吋管與8吋管) 184
附錄E:焊接管鞋管模擬結果(10吋管與12吋管) 194




表目錄
表3.1 警戒訊號離管鞋距離 44
表4.1 3吋碳鋼管之材料參數 77
表4.2 L(0,2)經缺陷之反射係數 77
表4.3 T(0,1)經缺陷之反射係數 77
表5.1 各頻率之模擬結果 119


圖目錄
圖1.1 傳統超音波與導波檢測法比較 8
圖2.1 應用導波技術檢測管路缺陷示意圖 26
圖2.2 無限長圓管(內徑為a,外徑為b) 26
圖2.3 不同n值之節點位移分佈 26
圖2.4 圓管上縱向模態波傳模式 27
圖2.5 圓管上扭矩模態波傳模式 27
圖2.6 圓管上撓曲模態波傳模式 27
圖2.7 6吋管中不同頻率的L(0,2)模態傳遞1.5公尺訊號圖 32
圖2.8 六吋碳鋼管之相位速度頻散曲線 33
圖2.9 六吋碳鋼管之群波速度頻散曲線 33
圖2.10 70 kHz L(0,2)模態之波形結構 34
圖2.11 T(0,1)模態之波形結構 .34
圖2.12 缺陷引發波式轉換示意圖 35
圖2.13 體積V,表面積S,單位體積重f的物體 35
圖2.14 元素體積平衡圖 36
圖2.15 一表面之元素體積 36
圖2.16 元素的表面變形 .37
圖2.17 四面體元素 37
圖2.18 四面體元素的Shape Function 38
圖3.1 GUL公司環狀陣列探頭(6吋管及8吋管) 44
圖3.2 訊號處理器(Wavemaker SE16) 45
圖3.3 Wave Pro 45
圖3.4 Wave Pro回波訊號示意圖 46
圖3.5 法蘭之回波訊號圖 .46
圖3.6 焊道之回波訊號圖 47
圖3.7 彎管之回波訊號圖 47
圖3.8 缺陷之回波訊號圖 47
圖3.9 管件特徵配置圖 48
圖3.10 管鞋尺寸 48
圖3.11 安裝探頭 49
圖3.12 探頭安裝完成圖 49
圖3.13 32 kHz 實驗一結果 .50
圖3.14 28 kHz 實驗一結果 51
圖3.15 25 kHz 實驗一結果 52
圖3.16 20 kHz 實驗一結果 53
圖3.17 32 kHz 實驗二結果 54
圖3.18 28 kHz 實驗二結果 .55
圖3.19 25 kHz 實驗二結果 56
圖3.20 20 kHz 實驗二結果 57
圖4.1 3吋碳鋼管群波速度圖 .78
圖4.2 3吋探鋼管波型結構:(a) 70 kHz L(0,2)及(b)55 kHz T(0,1) 78
圖4.3 1.8公尺3英吋碳鋼管薄膜模型 79
圖4.4 網格劃分完成圖 79
圖4.5 70 kHz 5cycles toneburst .80
圖4.6 施加負載 .80
圖4.7 70 kHz 5cycles toneburst與位移為0之負載 81
圖4.8 邊界條件完成圖 .81
圖4.9 時間參數設定 82
圖4.10 70 kHz L(0,2)模態變形時間關係圖 83
圖4.11 POST26處理器分析之節點 84
圖4.12 C處節點各方向之位移量 85
圖4.13 D處節點各方向之位移量 .86
圖4.14 缺陷薄膜模型完成圖 .87
圖4.15 25%周向缺陷 87
圖4.16 L(0,2)模態傳經25%周向缺陷之變形時間關係圖 88
圖4.17 C處節點之軸向時域訊號 89
圖4.18 萃取0階模態時域圖 90
圖4.19 萃取1階模態時域圖 90
圖4.20 萃取2階模態時域圖 91
圖4.21 50%周向缺陷 91
圖4.22 L(0,2)模態傳經50%周向缺陷之變形時間關係圖 92
圖4.23 C處節點之軸向時域訊號 93
圖4.24 萃取0階模態時域圖 94
圖4.25 萃取1階模態時域圖 94
圖4.26 萃取2階模態時域圖 95
圖4.27 激發55 kHz T(0,1)模態之負載 95
圖4.28 邊界條件完成圖 96
圖4.29 時間參數設定 96
圖4.30 55 kHz T(0,1)模態之變形時間關係圖 97
圖4.31 POST26處理器分析之節點 98
圖4.32 C處節點各方向之位移量 99
圖4.33 D處節點各方向之位移量 100
圖4.34 缺陷薄膜模型完成圖 101
圖4.35 25%周向缺陷 101
圖4.36 T(0,1)模態傳經25%周向缺陷之變形時間關係圖 102
圖4.37 C處節點之軸向時域訊號 103
圖4.38 萃取0階時域訊號圖 104
圖4.39 萃取1階時域訊號圖 104
圖4.40 萃取2階時域訊號圖 105
圖4.41 T(0,1)模態傳經50%周向缺陷之變形時間關係圖 106
圖4.42 C處節點之軸向時域訊號 107
圖4.43 萃取0階時域訊號圖 108
圖4.44 萃取1階時域訊號圖 108
圖4.45 萃取2階時域訊號圖 109
圖5.1 焊接管鞋管模型 119
圖5.2 管鞋模型 120
圖5.3 6吋碳鋼管群波速度圖 120
圖5.4 32 kHz C處之0階時域圖 121
圖5.5 32 kHz C處之1階時域圖 122
圖5.6 32 kHz C處之2階時域圖 123
圖5.7 25 kHz C處之0階時域圖 124
圖5.8 25 kHz C處之1階時域圖 125
圖5.9 25 kHz C處之2階時域圖 126
圖5.10 實驗與模擬比較 127
圖5.11 T(0,1)模態傳經管鞋之應力分佈 128
圖5.12 T(0,1)模態傳經管鞋之應力分佈 129
圖5.13 T(0,1)模態傳經管鞋之應力分佈 130
圖5.14 板波類型 131
圖5.15 7mm碳鋼板群波速度圖 131
圖5.16 (a)S0模態撥型結構圖 (b)A0模態波型結構圖 132
圖5.17 P波、SH波與SV波波型結構 133
圖5.18 焊接方形板薄模模型 134
圖5.19 T(0,1)模態傳經方形板之應力分佈 135
圖5.20 方形板底端節點之位移訊號 136
圖5.21 管鞋內部之波傳路徑 137
圖5.22 缺陷管模型 138
圖5.23 32 kHz缺陷訊號分析 139
圖5.24 28kHz缺陷訊號分析 140
圖5.25 25 kHz缺陷訊號分析 141
圖5.26 20kHz缺陷訊號分析 142
圖5.27 5 %缺陷位於管鞋前方之薄膜模型簡圖 143
圖5.28 5 %缺陷位於管鞋上方之薄膜模型簡圖 143
圖5.29 32 kHz缺陷訊號分析 144
圖5.30 28 kHz缺陷訊號分析 145
圖5.31 25kHz缺陷訊號分析 146
圖5.32 20kHz缺陷訊號分析 147
參考文獻 References
參考文獻
1. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
2. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
3. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
4. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
5. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
6. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
7. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
8. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
9. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
10. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
11. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
12. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
13. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
14. G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
15. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
16. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
17. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
18. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
19. J.J. Ditri, J.L. Rose, "Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions", J. of Applied Phys., Vol. 72, No. 7, 1992.
20. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
21. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
22. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
23. J. Li and J. L. Rose, “Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1720-1729, 2002.
24. T. Hayashi, K. Kawashima, Z. Sun, J. L. Rose, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” Journal of Acoustical Society of America, Vol. 113, pp. 1241-1248, 2002.
25. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
26. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
27. M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
28. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
29. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
30. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” J. Acoust. Soc. Am., Vol. 112, No. 6, December, pp. 2589-2601, 2002.
31. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
32. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
33. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
34. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
35. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
36. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
37. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E Int, Vol. 37, No. 3, pp.167-180, 2004.
38. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” J. Acoust. Soc. Am., Vol. 114, No. 2, August, pp. 611-625, 2003.
39. Joseph L. Rosea, Michael J. Aviolib, “Guided wave inspection potential of defects in rail”, NDT&E, April 2003
40. Ivan Bartolia, Francesco Lanza di Scaleaa, “Modeling guided wave propagation with application to the long-range defect detection in railroad tracks”, NDT&E, October 2004
41. Marc Niethammer and Laurence J. Jacobs, “Time-frequency representations of Lamb waves,” Journal of the Acoustical Society of America, pp. 1841-1847, 2001.
42. Stephen D. Holland and Sorin V. Teles, “Air-coupled, focused ultrasonic dispersion spectrum reconstruction in plates”, JASA, 2004
43. H. Kwun and S. Y. Kim, “Magnetostrictive Sensor for generating and detecting plate guided waves”,(2005)171-178
44. I. A. Viktorov, Rayleigh and Lamb Waves – Physical Theory and Applications, New York : Plenum Stress, 1967.
45. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
46. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
47. Tirupathi R. Chandrupatla, Introduction to finite elements in engineering.
48. Singiresu S. RAO, The finite element method in engineering.
49. Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
50. 李秉鴻,應用扭矩模態導波於管線檢測之實用性評估,國立中山大學機械與機電工程研究所碩士論文,中華民國93年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.125.219
論文開放下載的時間是 校外不公開

Your IP address is 18.223.125.219
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code