Responsive image
博碩士論文 etd-0828106-182411 詳細資訊
Title page for etd-0828106-182411
論文名稱
Title
使用有限元素法分析二維聲子晶體波傳特性
Analysis of the Wave Propagation in Two-Dimensional Phononic Crystal Using the Finite Element Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-10
繳交日期
Date of Submission
2006-08-28
關鍵字
Keywords
頻溝、吸(隔)音材、聲子晶體、有限元素
band gaps, absorption (isolation) material, phononic crystal, finite element method
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本文藉由有限元素模擬分析固—流組合而成之二維聲子晶體波傳特性,並以聲音衰減量呈現聲子晶體發生頻溝之頻帶。首先模擬Sánchez-Pérez等人研究由不鏽鋼作為填充體,空氣作為母材之二維聲子晶體有限元素模型,證實本模擬的可行性,並進行全頻寬之實驗量測與數值模擬;接著以實驗搭配模擬分析填充率5%與10%之正方晶格與填充率10%之六角晶格聲子晶體,綜合[100]與[110]方向入射之結果,可計算求得全頻溝發生之區間。
本研究成果已成功建立有限元素模擬分析固—流組合成之二維聲子晶體模型,經由比對文獻結果和本實驗結果已驗證模擬之可行性與準確性,這將說明有限元素法可成為未來聲子晶體在設計成為新型吸(隔)音材的一項有利分析工具之一。
Abstract
In this work we apply the finite element method to analyze the wave transmission property of solid/fluid composite medium, phononic crystal. The sound attenuation spectrum is obtained to show the forbidden bands of the band gap. First, we construct the finite element model for a two-dimensional phononic crystal, studied by Sánchez-Pérez etc. with PWE and experimentally, constituted of a rectangular array of parallel circular stainless steel cylinders in air. It has demonstrated that our simulation work was feasible; then, we performed the experimental measurements and simulations by using the narrow and wide frequencies. The results show agreement between the experiments and the simulations. We also simulated the crystal samples of filling fraction 5 % and 10 % for square and hexagon lattice, respectively, in both the [100] and [110] direction. The full band gaps are determined from the combination of the results.
We have investigated the finite element simulation for the solid/fluid phononic crystal successfully. Both work the results of experiment in the reference and in this work are compared with the FEM simulation. It demonstrates that the finite element method is a good tool for the design of phononic crystal in application to new type sound absorption (isolation) material.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-3研究動機與目的 5
第二章 基本理論 7
2-1 聲子晶體相關理論 7
2-1-1 二維晶格種類 7
2-1-2 晶體晶格與倒晶格(Reciprocal Lattice) 8
2-1-3 填充率(Filling Fraction) 9
2-1-4 布拉格定理(Bragg Law) 10
2-1-5 布里淵區(Brillouin Zone) 13
2-1-6 [100]與[110]方向指數 14
2-1-7 頻溝產生的機制 16
2-2 有限元素法原理 17
2-2-1有限元素法概述 17
2-2-2 以有限元素模擬水中聲場變化 17
2-2-3 流/固耦合作用 21
2-2-4 有限元素軟體介紹與處理步驟 22
2-2-5 使用元素介紹 23
第三章 數值模擬方法及步驟 39
3-1 模擬目的 39
3-2 模擬設定及步驟 40
3-2模擬數據處理 49
第四章 實驗設定與架構 54
4-1 實驗目的 54
4-2 二維聲子晶體製作 54
4-3 二維聲子晶體實驗設備 55
4-4 實驗設定與架構 58
4-5 探頭遠場的安置 59
第五章 實驗與模擬結果 74
5-1 數值模擬與文獻實驗比對 74
5-2 數值模擬與實驗之單頻與全頻寬結果比較 75
5-3 數值模擬與實驗之比較與分析 77
5-4 數值模擬計算全頻溝 79
第六章 結論與未來研究方向 98
6-1結論 98
6-2 未來研究方向 99
參考文獻 101
參考文獻 References
1. M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafarirouhani, “Acoustic band-structure of periodic elastic composites,” Phys. Rev. Lett., 71(13), 2022~2025, 1993.
2. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, B. Djafarirouhani, “Theory of acoustic band-structure of periodic elastic composites,” Phys. Rev. B, 49(4), 2313~2322, 1994.
3. M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett., 64(9), 1085-1087, 1994.
4. M. S. Kushwaha, “Stop-bands for periodic metallic rods: Sculptures that can filter the noise,” Appl. Phys. Lett., 70(24), 3218~3220, 1997.
5. 林思親,二維聲子晶體波傳與頻溝現象之研究,台灣大學應用力學研究所碩士論文,台北市,2000年。
6. Y. Tanaka, Y. Tomoyasu, S. I. Tamura, “Band structure of acoustic waves in phononic lattices Two dimensional composites with large acoustic mismatch” Phys. Rev. B, 62(11), 7387-7392, 2000.
7. M. M. Sigalas, N. GarcÌa, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method”, J. Appl. Phys. 87(6), 3122-3125, 2000.
8. C. Audoly and G. Dume´ry, ‘‘Acoustic wave propagation in media containing two-dimensional periodically spaced elastic inclusions,’’ in Physical Acoustics, edited by O. Leroy and M. A. Breazeale Plenum, New York, 219–224, 1991.
9. M. Kafesaki, E. N. Economou, “Multiple-scattering theory for three-dimensional periodic acoustic composites”, Phys. Rev. B, 60(17), 11993-12001, 1999.
10. Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen, J.H. Page, ” Elastic wave scattering by periodic structures of spherical objects-Theory and experiment” Phys.Rev. B, 62(4), 2446-2457, 2000.
11. D. J. Mead, ‘‘A general theory of harmonic wave propagation in linear periodic systems with multiple coupling,’’ Journal of Sound and Vibration, 27(2), 235-260, 1973.
12. T. C. Ma, R. A. Scott, and W. H. Yang, ‘‘Harmonic wave propagation in an infinite elastic medium with a periodic array of cylindrical pores,’’ Journal of Sound and Vibration, 71(4), 473-482, 1980.
13. M. S. Bennett, ‘‘Free wave propagation in orthogonally stiffened cylinders,’’ Ph.D. thesis, The University of Connecticut, Storrs, (1989).
14. A. C. Hennion, R. Bossut, J. N. Decarpigny, and C. Audoly, ‘‘Analysis of the scattering of a plane acoustic wave by a periodic elastic structure using the finite element method: Application to compliant tube gratings,’’ J. Acoust. Soc. Am. 87(5), 1861–1870, 1990.
15. A. C. Hladky-Hennion and J. N. Decarpigny, ‘‘Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings,’’ J. Acoust. Soc. Am. 90(6), 3356–3367, 1991.
16. T. Miyashita, “Full band-gaps of sonic crystals made of acrylic cylinders in air – Numerical and experimental investigations,” Jpn. J. Appl. Phys., 41(5), 3170~3175, 2002.
17. M. S. Kushwaha, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, J. O. Vasseur, “Acoustic spectral gaps and discrete transmission in slender tubes,” Solid State Commun., 106(10), 659~663, 1998.
18. R. James, S. M. Woodley, C. M. Dyer, V. F. Humphrey, “Sonic bands, bandgaps, and defect states in layered structures― theory and experiment,” J. Acoust. Soc. Am., 97(4), 2041~2047, 1995.
19. X. L. Li, F. G. Wu, H. F. Hu, et al., “Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites,” J. Phys. D: Appl. Phys., 36(1), L15~L17, 2003.
20. Y. Y. Chen, Z. Ye, “Acoustic attenuation by two-dimensional arrays of rigid cylinders,” Phys. Rev. Lett., 87(18), 184301-1~184301-4, 2001.
21. M. Kafesaki, M. M. Sigalas, E. N. Economou, “Elastic wave band gaps in 3-D periodic polymer matrix composites,” Solid State Commun., 96(5), 285~289, 1995.
22. A. Khelif, M. Wilm, V. Laude, S. Ballandras, B. Djafari-Rouhani, “Guided elastic waves along a rod defect of a two-dimensional phononic crystal,” Phys. Rev. E, 69(4), 067601-1~067601-4, 2004.
23. T. T. Wu, Z. G. Huang, S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B, 69(9), 094301-1~094301-10, 2004.
24. S. Guenneau, A. B. Movchan, “Analysis of elastic band structures for oblique incidence,” Arch. Rational Mech. Anal., 171(1), 129~150, 2004.
25. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B, 68(4), 214301-1~214301-4, 2003.
26. S. E. Sherer, “Scattering of sound from axisymmetric sources by multiple circular cylinders,” J. Acoust. Soc. Am., 115(2), 448~496, 2004.
27. X. Zhang, Z. Y. Liu, J. Mei, Y. Y. Liu, “Acoustic band gaps for a two-dimensional periodic array of solid cylinders in viscous liquid,” J. Phys.: Condens. Matter, 15(49), 8207~8212, 2003.
28. X. H. Hu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, “Complete band gaps for liquid surface waves propagating over a periodically drilled bottom,” Phys. Rev. E, 68(6), 066308-1~066308-5, 2003.
29. B. Manzanares-Martinez, F. Ramos-Mendieta, “Surface elastic waves in solid composites of two-dimensional periodicity,” Phys. Rev. B, 68(13), 134303-1~134303-8, 2003.
30. J. O. Vasseru, P. A. Deymier, A. Khelif, Ph. Lambin, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynskim N. Fettouhi, “Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study ” Phys. Rev. E, 65(5), 056608, 2002.
31. J. V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, "Sound attenuation by a two-dimensional array of rigid cylinders," Phys. Rev. Lett., 80(24), 5325~5328, 1998.
32. 林宜賢,聲子晶體結構應用於水中吸音材料之可行性研究,中山大學機械工程研究所碩士論文,高雄市,2003年。
33. C. Kittel, Introduction to Solid State Physics 7th ed., John Wiley & Sons. Inc., Canada, 1996.
34. Y. Liu, “Wave propagation study using finite element analysis,” Ph.D. thesis, The University of Illinois, Urbana-Champaign, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.135.224
論文開放下載的時間是 校外不公開

Your IP address is 18.191.135.224
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code