Responsive image
博碩士論文 etd-0828106-201747 詳細資訊
Title page for etd-0828106-201747
論文名稱
Title
污染場址健康風險評估參數之敏感性分析
Sensitivity Analysis of Parameters Used in Health and Risk Assessment at Contaminated Sites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
176
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-17
繳交日期
Date of Submission
2006-08-28
關鍵字
Keywords
敏感性分析、暴露評估、風險管理、蒙地卡羅、不確定性、風險評估
Monte Carlo, Uncertainty, Sensitivity, @RISK, Risk assessment, Risk, RBCA
統計
Statistics
本論文已被瀏覽 5745 次,被下載 3646
The thesis/dissertation has been browsed 5745 times, has been downloaded 3646 times.
中文摘要
美國材料試驗協會(American Society for Testing and Materials ,簡稱ASTM) 於1995年所提出基於層次性(Tiered Approach)的「風險基準矯正行動應用於石油洩漏場址之評估準則(Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites ,簡稱RBCA),E1739號準則」,2002年更新;於2004年再提出「風險基準矯正行動應用於化學洩漏場址之評估準則(RBCA),E2081號準則」,其評估步驟的標準化,成為國內外最常被引用之評估模式。
本研究主要以RBCA準則所提供之數學模式來計算整治標準和風險度評估。因研究中首先將利用敏感性分析,了解輸入參數的意義與輸出風險的影響大小;再應用商用軟體@RISK配合微軟公司之EXCEL試算表,進行蒙地卡羅法來分析吸入風險機率分佈;最後以一實際案例之風險評估進行風險值、整治目標及敏感度研究結果的應用與探討。
由RBCA範例研究結果得知,影響風險值之高敏感性參數包括污染空氣來源面積、蒸氣蒸散氣流平均時間、污染空氣來源與風向平行之長度、下游與汙染源之距離、污染源寬度、地下水達西速率等。另由蒙地卡羅法分析吸入風險結果得知,當累計機率為95%時,其致癌機率約為15×10-6;而食入風險,當累計機率為95%時,其致癌機率約為31×10-6,皆較我國環境保護署(以下簡稱環保署)在土壤及地下水污染整治法之初評法中,所訂定的致癌風險百萬分之一為高。因此在致癌危害方面,表示對人體健康產生威脅。而在吸入非致癌風險分析結果部份,所計算出之慢性病危害指數約為0.5,小於環保署訂定之危害指數為1的規定,因此在慢性病危害方面,並不會對人體健康造成威脅;食入非致癌風險部份,所計算出之慢性病危害指數則約為1.3,大於環保署訂定之危害指數為1的規定,對人體健康產生威脅。且由結果得知,食入致癌風險及慢性病危害之機率皆高於吸入風險機率,應針對食入途徑採取適當措施,降低危害風險。
在案例研究方面,本案例為一含氯有機污染物場址,健康風險評估結果以地下水傳輸介質的風險最大;暴露途徑則以地下水蒸氣蒸發吸入及地下水食入兩途徑之風險最高。因此,可由本研究之敏感性分析結果得知,該場址風險特性之主要敏感參數包括每日飲水速率、地下水淨入滲率、地下水達西速率、地下水混合層厚度、下游與汙染源之距離等。並針對本場址提出風險控管方案與初估之成本分析與建議,所研擬之風險管理方案包括阻絕、阻絕加上整治、開發加上整治等三方面。成本初估以30年操作之成本估算結果來比較,方案B、C、E4、E5所需之工程操作費用較低,但若考慮成本效益問題,因B方案只單純阻截,防止污染物外擴;C方案除阻截外,還加入部分處理;E4方案亦為單純阻截控制,但加入開發再利用計畫;E5方案除阻截處理外,再加入開發計畫,所以若以對人體危害最小的觀點來看,應選擇有進行污染物清除處理之方案;而以褐地再利用觀點,則應選擇有開發規劃之方案,另若以經濟誘因回本最快之觀點,就得選擇能有效處理污染物,又能土地開發再利用之方案。方案之選擇,端賴決策者之規劃目標而定。
Abstract
Risk-based corrective action (RBCA) is rapidly becoming an accepted approach for the remediation of contaminated sites. Under a RBCA approach, the risks to human health and the environment associated with a contaminated site are evaluated and appropriate corrective measures are taken as needed to reduce risk to acceptable levels. A series of standard guides of RBCA have been developed by American Society for Testing and Materials (ASTM). The major tasks of this study were to (1) perform the sensitiveness analysis to evaluate the effectiveness of each input parameter on the calculated risks, (2) application of Monte Carlo simulation using a statistic software (@RISK) to analyze the distribution probability of inhalation risk, (3) conduct a risk evaluation and risk calculation at a chlorinated-compound contaminated site.
Results from the sensitiveness analysis show that the major factors, which play important roles in the risk evaluation including sources of air pollution, vapor transportation rate, pollutant volatilization rate, length and direction of wind, distance of pollutant transport, width of pollution source, and groundwater flow velocity. Results from the Monte Carlo simulation show that the carcinogenic risk is about 15×10-6 when the accumulation rate is 95% via inhalation. Moreover, the carcinogenic risk is about 31×10-6 when the accumulation rate is 95% via ingestion. The calculated risk levels are higher than the requirement for minimum target risk level (cancer risk of 1x10-6) described in Taiwan’s “Soil and Groundwater Remediation Act”. Results also show that the hazard index of non-carcinogenic risk is about 0.5 via the route of inhalation, which is higher than the minimum target risk level of 1. Moreover, the hazard index of non-carcinogenic risk is about 1.3 via the route of ingestion, which is lower than the acceptable level of 1.
Results from the case study show that the major pollutant exposure routes at this chlorinated-compound contaminant site include inhalation of contaminant vapor and groundwater ingestion. Therefore, the input parameters affect the calculated risks include daily intake of drinking water, groundwater infiltration, groundwater flow velocity, aquifer depth, and distance of pollutant transport. Based on the results of risk assessment, it is very important for the decision makers to incorporate remedial activities including institutional controls, engineering controls, and remediation programs from RBCA results. This study provides a streamlined process and guidelines of developing the risk-based decision-making strategy for contaminated sites in Taiwan.
目次 Table of Contents
目錄
頁次
謝誌 I
中文摘要. II
英文摘要. IV
目錄. VII
圖目錄. XI
表目錄 XIII
第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目的 1-2
1.3 研究內容 1-3
第二章 文獻回顧 2-1
2.1 健康風險評估 2-1
2.1.1 健康風險評估的定義 2-3
2.1.2 健康風險評估的國內法源依據 2-3
2.1.3 國內外風險評估的發展 2-4
2.1.4 未來的發展與挑戰 2-8
2.2 不確定性分析 2-10
2.2.1 不確定性的定義 2-10
2.2.2 不確定性分析的種類 2-10
2.3 敏感性分析 2-13
2.3.1 敏感性分析的定義 2-13
2.3.1 敏感性分析的方法 2-13
2.4 蒙地卡羅模擬分析技術 2-19
2.4.1 蒙地卡羅模擬分析技術的定義 2-19
2.4.2 蒙地卡羅模擬分析技術的方法 2-20
第三章 研究方法 1
3.1 土壤及地下水污染之健康風險評估 3-2
3.1.1 危害鑑定(Hazard Identification): 3-3
3.1.2 劑量反應評估(Dose-Response Evaluation): 3-3
3.1.3 暴露評估(Exposure Assessment): 3-6
3.1.4 風險度推估(Risk Characterization) 3-7
3.2 層次性健康風險評估 3-13
3.2.1 第一層次健康風險評估 3-15
3.2.2 第二層次健康風險評估 3-15
3.2.3 第三層次健康風險評估 3-16
3.3 敏感性分析 3-18
3.3.1 敏感性分析原理 3-19
3.3.2 本研究敏感性分析方法 3-20
3.4 蒙地卡羅模擬技術 3-22
3.4.1 蒙地卡羅模擬技術分析原理 3-23
3.4.2 本研究蒙地卡羅模擬技術分析方法 3-23
第四章 研究結果與探討 4-1
4.1 敏感性分析結果與討論 4-1
4.1.1 參數與總風險敏感性分析結果與討論 4-3
4.1.2 單一暴露途徑與風險值之敏感性分析結果與討論 4-18
4.1.3 傳輸介質與風險值之敏感性分析結果與討論 4-20
4.1.4 影響暴露途徑之Tier 1和Tier 2敏感參數 4-22
4.1.5 參數敏感性分析建議 4-24
4.2 蒙地卡羅模擬分析結果 4-32
第五章 案例探討 5-1
5.1 背景資料 5-1
5.2 健康風險評估 5-1
5.2.1 關切污染源及污染物 5-1
5.2.2 暴露評估 5-3
5.2.3 風險值推估 5-5
5.2.4 整治目標值推估 5-10
5.3 風險管理策略研擬 5-13
第六章 結論與建議 6-1
6.1 結論 6-1
6.2 建議 6-2
參考文獻 參-1
符號表 符-1
附錄
附錄一 案例參數與出處
附錄二 健康風險評估數學模式推導
附錄三 風險基準篩選水準計算公式
附錄四 參數變動風險變化情形
附錄五 蒙地卡羅採樣範例值

圖 目 錄
頁次
圖2-1 美國本土採用ASTM RBCA架構分佈圖 2-7
圖2-2 蒙地卡羅模擬分析流程圖 2-21
圖3-1 研究流程圖 3-1
圖3-2 健康風險評估管理策略流程圖 3-3
圖3-3 RBCA準則評估流程圖 3-13
圖3-4 我國健康風險評估三層次流程圖 3-14
圖3-5 敏感性分析流程圖 3-18
圖3-6 蒙地卡羅模擬流程圖 3-22
圖4-1 人體暴露途徑參數與風險值間之敏感度分析圖 4-25
圖4-2 場址特性參數與風險值間之敏感度分析圖 4-27
圖4-3 遠距傳輸參數與風險值間之敏感度分析圖 4-29
圖4-4 年齡分佈情形 4-34
圖4-5 性別分佈情形 4-34
圖4-6 小於3歲之曝露期間分佈情形 4-34
圖4-7 3至11歲之曝露期間分佈情形 4-35
圖4-8 11至20歲之曝露期間分佈情形 4-35
圖4-9 21至30歲之曝露期間分佈情形 4-35
圖4-10 31至60歲之曝露期間分佈情形 4-36
圖4-11 大於60歲之曝露期間分佈情形 436
圖4-12 吸入非致癌機率統計結果 4-38
圖4-13 食入非致癌機率統計結果 4-38
圖4-14 吸入致癌機率統計結果 4-39
圖4-15 食入致癌機率統計結果 4-39
圖5-1 關切污染範圍及評估點示意圖 5-4
圖5-2 潛在危害暴露評估圖 5-4
圖5-3 工程控制經費比較圖 5-19
圖5-4 A方案示意圖 5-21
圖5-5 B,C方案示意圖 5-22
圖5-6 D1,D2方案示意圖 5-23

表 目 錄
頁次
表2-1 ASTM準則ㄧ覽表 2-2
表2-2 各國健康風險評估模式或規範彙整表 2-5
表2-2 健康風險評估模式或規範彙整表(續) 2-6
表2-3 ASTM RBCA與我國健康風險評估層次性比較 2-8
表2-4 ASTM RBCA場址特性敏感性分析表 2-17
表2-4 ASTM RBCA場址特性敏感性分析表(續) 2-18
表4-1 人體基本暴露敏感參數結果彙整表(13項參數) 4-4
表4-1 人體基本暴露敏感參數結果彙整表(13項參數)(續) 4-5
表4-2 場址特性敏感參數結果彙整表(32項) 4-6
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-7
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-7
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-8
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-9
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-10
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-11
表4-2 場址特性敏感參數結果彙整表(32項)(續) 4-12
表4-3 遠距離傳輸模式敏感參數結果彙整表(15項) 4-13
表4-3 遠距離傳輸模式敏感參數結果彙整表(15項)(續) 4-14
表4-4 敏感性參數總排名結果表 4-16
表4-4 敏感性參數總排名結果表(續) 4-17
表4-5 各傳輸途徑與各參數群組之敏感度結果 4-19
表4-6 影響單一暴露途徑之最大敏感參數結果分析 4-20
表4-7 健康風險評估模式中傳輸介質對風險之敏感度結果 4-20
表4-8 影響第一層次/第二層次風險的敏感性參數彙整表 4-22
表4-8 影響第一層次/第二層次風險的敏感性參數彙整表(續) 4-23
表4-9 人體暴露途徑參數與風險值間之敏感度分析 4-25
表4-10 場址特性參數與風險值間之敏感度分析 4-27
表4-11 遠距傳輸參數與風險值間之敏感度分析 4-29
表4-12 前20大敏感性參數量測說明 4-31
表4-13 體重分佈情形 4-33
表4-14 吸入土壤顆粒速率之分佈情形 4-33
表5-1 關切污染物濃度 5-2
表5-2 健康風險評估評估點 5-3
表5-3 健康風險評估Tier 2場址內A點評估結果 5-6
表5-4 健康風險評估Tier 2場址外B點評估結果 5-7
表5-5 健康風險評估RBSL及SSTL整治目標 5-12
表5-6 工程控制方案成本分析表 5-16
表5-6 工程控制方案成本分析表(續) 5-17
參考文獻 References
參考文獻

英文參考文獻
American Society for Testing and Material (ASTM), “E1739-95(2002) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites”, 2002.

Andreas, D.K., “Standardization of procedures and structures for risk evaluation in Germany:The work of the Risk Commission ”, International Journal of Hygiene and Environmental Health, 2003.

American Society for Testing and Material (ASTM), “E2081-00(2004)e1 Standard Guide for Risk-Based Corrective Action”, 2004.

Avagliano, S., A. Vecchio, and V. Belgiorno, “Sensitive parameters in predicting exposure contaminants concentration in a risk assessment process”. Environmental Monitoring And Assessment 111 (1-3), 133-148 , 2005.

Bennett, D.H., A.L. James, T.E. McKone and C.M., Oldenburg, “ On uncertainty in remediation analysis: variance propagation from subsurface transport to exposure modeling” , Reliability Engineering & System Safety 62 (1-2), 1998.

Ball, R.O. and M.W. Hahn, “Statistics of small data sets”, Proceedings of the 1998 Symposium on Superfund Risk Assessment in Soil Contamination Studies: Third Volume, , San Diego, CA, USA, Jan, 11-Jan, 16, 1998.

Clark, D.K., D.F. Darling, T.L. Hineline and P.H. Hayden, “Field trial of the biowall technology at a former manufactured gas plant site”, Proceedings of the 1997 29th Mid-Atlantic Industrial and Hazardous Waste Conference, Blacksburg, VA, USA Stearns & Wheler, LLC, Cazenovia, NY, USA Jul, 13-16, 397-403, 1997.

Clark, K.E. and M.G. Richardson, “Fate and exposure models: Selecting the appropriate model for a specific application – introduction”, O'Connor Associates Environmental, Inc, Oakville, Ont., Can. May, Journal of Soil Contamination, 267-274, 1998.

Cullen, A.C., and H.C. Frey, “Probabilistic techniques in exposure assessment”, New York and London , 1999.

David, T., G.P Williams., and J.P. Butler, “Engineering approach for TIER 2 RBCA evaluations at NAPL-Contaminated Site”, Journal of water resources planning and management, 2001.

Chang, S.H., C.Y. Kuo and J.W. Wang, K.S. Wang, “Comparison of RBCA and CalTOX for setting risk-based cleanup levels based on inhalation exposure” CHEMOSPHERE 56 (4), JUL, 2004.

Davis, K. and C. Bolton, “Analysis of the success of RBCA in Tennessee UST site management”, Proceedings of the Univ of Tennessee Waste Management Research and Education Inst, Knoxville, TN, USA 1998 Geo-Congress, Oct, 18-21, Boston, MA, USA, 196-208, 1998.

Davis, K. and C. Bolton, “Reducing costs of UST site management using RBCA strategy”, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management Volume Univ of Tennessee, Knoxville, TN, USA Apr 3,, 94-100., 1999

Eidson, A., F. Monn and W. Stephen, “Application of the American Society for Testing and Materials Risk-Based Corrective Action Approach to a real estate transfer: A case study” , 1997.

Esmaili, E., “ASTM Risk-Based Corrective Action (RBCA) program Foster Wheeler Environmental Corp ”, Proceedings of SPE 1997 67th Annual Western Regional Meeting, Long Beach, CA, USA, Society of Petroleum Engineers (SPE), Richardson, TX, USA, Costa Mesa, CA, USA, 763, Jun 25-27, 1997.

Eidson, A.F. and S.W. Monn, “Application of the American Society for Testing and Materials Risk-Based Corrective Action Approach to a real estate transfer: A case study”, Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition, Jun 8-13, 1997.

Ganoulis, J., I. Bimbas, L. Duckstein and I. Bogardi, “Fuzzy arithmetic for ecological risk management”, Proceedings of the 1995 7th Risk-Based Decision Making in Water Resources, Santa Barbara, CA, USA , 401-415,Oct 8-13, 1995.

Guide to Using @RISK,Risk Analysis and Simulation.Add-In for Microsoft® Excel , Version 4.5, 2005.

Hers, I., R. Zapf-Gilje, S. Petrovic, M. Macfarlane and R. McLenehan,“Prediction of risk-based screening levels for infiltration of volatile subsurface contaminants into buildings”, Journal of Engineering and Applied Science, Proceedings of the 1996 6th Symposium on Environmental Toxicology and Risk Assessment, 265-285, 1317, 15-18, 1996.

Hamed, M.M., ”Probabilistic sensitivity analysis of public health risk assessment from contaminated soil”, Journal of Soil Contamination, 8 (3), 1999.

James, B.H., J.R. Governor, and B.H. Jonathan, “Assistant Secretary for Environment Protection,Health and natural resources”, north Carolina risk analysis framework, methods for determining contaminant target concentrations in soil and groundwater, State of north Carolina department of environment, 1996.

James, A.L. ,C.M., “Oldenburg.Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation”, Journal of water resources planning and management , 33, 11, 1997

Johnson, P. C., and R. A. Ettinger, “Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings”, Environ. Sci. Technol., 25, 8., 2001.

Jim, B., “Human health and environmental risk assessment: the need for a more harmonised and integrated approach”, Chemosphere 52, 1347–1351, 2003

Kavanaugh, M.C., “Singapore Overview of the management of contaminated sites in the US: the conflict between technology and public policy ENVIRON Corp ”, Proceedings of the 1996 18th Biennial Conference of the International Association on Water Quality., Singapore, CA, USA, Part 4, 275-283, V34, Jun 23-28, 1996.

Kuo, H.W., T.F. Chiang, I.I. Lo, J.S. Lai, C.C. Chan, and J.D. Wang, “Science of the Total Environment, Estimates of cancer risk from chloroform exposure during showering in Taiwan”. 218, 1-7, 1998.

Kennedy, L.G. and J.W. Everett, “Estimation of intrinsic biodegradation using a three step approach”, Proceedings of the 1998 91st Annual Meeting & Exposition of the Air & Waste Management Association, San Diego, CA, USA, Air & Waste Management Assoc, Pittsburgh, PA, USA Mantech Environmental Management Services, Inc, Ada, OK, USA Jun 14-18, 1998.

Kochera, D.C., and H. Greimb, “An approach to comparative assessments of potential health risks from exposure to radionuclides and hazardous chemicals”, 2001

Kentel, E. and M.M. Aral, “2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment”, Regulatory Toxicology And Pharmacology Assessment, 19 (1), 2005.

Meek, M.E., and K. Hughes, “Approach to Health Risk Determination for Metals and Their Compounds under the Canadian Environmental Protection Act”, Stochastic Environmental Research And Risk, 22, 206-212, 1995.

Mager, D. and W. Kraus, “ Overview of the uranium mine and mill remediation activities in Germany”, Carl Hanser Verlag, Munchen, Germany Kerntechnik, KERNEU 60, 248-254, 1995.

McLeod, D.P. and A.P. Ridley, “Handling the difficult brownfields issues: A case study of privately funded remediation to residential standards”, Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition, 8-13, 1997, Toronto, Canada, Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition, Toronto, Can, Blackwell Sanders Matheny Weary & Lombardi L.C., Kansas City, MO, USA Jun 8-13, 1997.

McMillen, S.J., R.I., Magaw, G. Deeley, J.M. Kerr and D.A. Edwards, “Risk-based screening method for evaluating total petroleum hydrocarbons at upstream sites”, Proceedings of the 1999 Exploration and Production Environmental Conference, SPE 52722, Austin, TX, USA, 1999.

Moschandreas, D.J. and S. Karuchit, “Scenario-model-parameter:a new method of cumulative risk uncertainty analysis”, Environment International, 28, 247-261, 2002.

Nevin, J.P., “Tier 2 RBCA toolkit”, Journal of Soil Contamination, Groundwater Services, Inc, Houston, TX, USA, May, 319-324, 1998.

Steinemann, A., “Feature article Rethinking human health impact assessment ”, Environmental Impact Assessment Review, 20, 27–645, 2000.

Stanley, C.C., Risk-Based Corrective Action (RBCA), Standardization News, ASTM, Conshohocken, PA, USA, 24, 22-27, 1996.

Schmitz, R.A., T.E. Cook, G.M.J. Ericson, M.M. Klebek, R.S. Robinson and D.R. Van Stempvoort, “Risk based management approach to the problem of gas migration”, Proceedings of the 1996 3rd International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Part 1 (of 2), 1, 9-12, 705-715, 1996.

Suedel, B.C., “Development of an ASTM standard guide for risk based corrective action (RBCA) for protection of ecological resources”, Proceedings of the 1998 91st Annual Meeting & Exposition of the Air & Waste Management Association, San Diego, CA, USA, Air & Waste Management Assoc, Pittsburgh, PA, USA ENTRIX, Inc Jun, 14-18, 1998.

Tomasko, D, G.P. Williams and J.P. Butler. “Engineering approach for tier 2 RBCA evaluations at NAPL-contaminated sites”, Journal of water resources planning and management, ASCE 127 (5), 2001.

Washburn, S.T. and K.G. Edelmann, “Development of risk-based remediation strategies”, Proceedings of the 1998 Geo-Congress, ASCE 18-21, 1998

Wilson, L.H. and J.R. Rocco, “Development of a site corrective action cost comparison model based on the ASTM RBCA guide and decision theory”, Proceedings of the, Boston, MA, USA, ASCE, Reston, VA, USA,BP Exploration & Oil Inc 1998 Geo-Congress, 217-228, Oct, 18-21, 1998.

Washburn, S. T. and K.G. Edelmann, “Development of risk-based remediation strategies”, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management Volume ENVIRON Corp, Princeton, NJ, USA 3, Apr, 77-82, 1999.

William, L., “Effective risk communication practice”, Toxicology Letters, 399-404, 2004.



中文參考文獻
王根樹,“土壤及地下水污染廠址健康風險評估評析原則草案”,台大公共衛生學院, 2004。
王春和,唐麗英 Excel 2003 統計分析”, 2005。
我國行政院環境保護署,“土壤及地下水污染場址健康風險評估評析原則”, 2006。
吳偉智,陳大麟,黃文彥,“RBCA健康風險評估中數學模式之探討”,第四屆地下水資源及水質保護研討會論文集 87-93, 2001。
吳婉玲,“淋浴期間飲用水中揮發性致癌物質吸入性健康風險評估”,中國醫藥學院, 2001。
吳偉智, 陳大麟,“污染傳輸模式在健康風險評估之應用,九十年度環保技術研究報告”,中國石油股份有限公司探採研究所, 2001。
吳偉智,陳大麟,黃文彥,“健康風險評估模式之不確定性分析”, 第一屆海峽土壤及地下水污染整治研討會論文集,2002年9月4-5日,台灣台北(台灣大學), 2002。
林進財,指導教授高志明,“以健康風險評估訂定由污染場址之整治目標”,國立中山大學環境工程研究所, 2001。
冠誠公司, ,ASTM在台專業講師訓練講義,Sensitivity Tables,台南, 2005年9月。
孫蔭華,指導教授馬鴻文,“地下水污染整治決策中不確定性分析方法之比較”,國立臺灣大學環境工程學研究所,全國碩博士論文網, 2000。
張巧蓉,指導教授馬鴻文,“多目標規劃與不確定性分析之結合:以地下水整治決策為例”,國立台灣大學環境工程學研究所, 2001。
馬鴻文,黃國威,黃子玲,“地下水污染風險評估之不確定性分析與降低”,第一屆土壤與地下水處理技術研討會, P497-502, 2003。
財團法人台灣營建研究處,“營建物價”,財團法人台灣營建研究處, 2006年5月號。
陳大麟,黃文彥,土壤與地下水污染場址之健康風險評估方法:風險基準矯正行動(RBCA),工業污染防冶季刊,第75期, 台灣2000年07月。
許惠悰,“風險評估與風險管理”,新文京開發出版股份有限公司, 2003。
黃文彥,盧哲明,劉博文,應用健康風險評估模式探討土壤�地下水污染之暴露風險問題,工業污染防冶季刊,第73期, 2000年01月。
黃國威,指導教授馬鴻文,“地下水污染風險評估之不確定性”,國立台灣大學環境工程學研究所, 2003。
黃文彥,林明勳,陳冠諺,吳偉智,林鼎祥,高志明,陳大麟, 污染場址健康風險評估之現況與趨勢, 2003。
鄭凱駿,指導教授盧明俊,“致癌性重金屬土壤污染管制標準之適用性探討”,嘉南藥理科技大學環境工程學系, 2005。




網頁參考文獻
台灣土壤及地下水環境保護協會, www.tasgep.org.tw。
行政院勞工委員會, 財團法人工業技術研究院,環境與安全衛生技術發展中心,危害物質危害數據資訊資料庫,http://www.e-safety.com.tw。
行政院環境保護署土壤及地下水污染整治基金管理委員會, 土壤及地下水污染整治網, http://www.epa.gov.tw/gaiscgi/getfilelist。
美國褐地技術支援中心,為一合作性組織,其成員包括美國環保署、陸軍工兵署、阿岡(Argonne)國家實驗室、東北有害物質研究中心等,美國褐地技術支援中心(Brownfield Technology Support Center), http://www.brownfieldstsc.org/index.htm。
美國環保署綜合風險資訊系統(Integrated Risk Information System,IRIS), http://www.epa.gov/iris/。
科學月刊全文資料庫, http://203.68.192.9/SCIENCE/content/1993/00060282/0020.htm。
何謂蒙地卡羅, http://66.102.7.104/search。
勞工安全衛生研究所(IOSH),分析方法資料庫,http://www.iosh.gov.tw/frame.htm。
American Society for Testing and Materials (ASTM International,), US EPA, http://www.astm.org。
劉凡碩、簡志宏 土壤與地下水污染整治基金管理與整治技術2005/1/11
經濟部工業局土壤及地下水污染預防與整治資訊網, http://proj.moeaidb.gov.tw。
The Federal Remediation Technologies Roundtable (FRTR), http://www.frtr.gov。
TerraTherm,The In-Situ Soil Remediation Experts, http://www.terratherm.com。
United States Army Corps of Engineers , Publications of the Headquarters, http://www.usace.army.mil/inet/usace-docs/eng-manuals/em.htm。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code