Responsive image
博碩士論文 etd-0828107-003309 詳細資訊
Title page for etd-0828107-003309
論文名稱
Title
奈米複合金屬製備及其對土壤/地下水污染整治應用之研究
The Preparation of Nanoscale Bimetallic Particles and Its Application on In-Situ Soil/Groundwater Remediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-09
繳交日期
Date of Submission
2007-08-28
關鍵字
Keywords
奈米級零價鐵、土壤與地下水污染、奈米複合金屬、電動力法
palladized nanoiron, nanoscale zero-valent iron, soil/groundwater pollution, electrokinetic process
統計
Statistics
本論文已被瀏覽 5670 次,被下載 3175
The thesis/dissertation has been browsed 5670 times, has been downloaded 3175 times.
中文摘要
本研究利用化學還原法藉改變合成程序製備得奈米零價鐵NZVI-A及NZVI-B;經由場發射型掃描式電子顯微鏡觀測結果,其粒徑分布分別介於50~80 nm及30~40 nm間,經氮氣吸/脫附檢測結果顯示,微粒呈介孔性結構,其表面孔徑分布經BJH模式推算結果集中於30-40 Å間。所測得之BET比表面積分別為128 m2/g及77 m2/g。而X-光繞射分析儀測得結果,證實粉體中主要為鐵及硼等物種,其顆粒結構及含硼之特性,使其具有出色之應用潛勢。另於不同水溶液及pH值之界達電位量測結果顯示,其等電位點皆出現在pH=6;經由超導量子干涉磁量儀進行磁性量測結果發現,兩者皆呈現超順磁特性,經前述實驗檢測後,得以進一步瞭解合成所得之奈米零價鐵之基本性質。
研究進一步於合成過程中,添加分散劑,以改善奈米鐵懸浮液之穩定性;此外,再以微粒鍍鈀之方式,增進微粒觸媒催化之特性。改質結果不僅未影響微粒原來特性,更提升了奈米鐵之有效反應位址。在藉由掃描式電子顯微鏡之能量分散光譜儀與能量分佈面掃描檢測證實,本研究成功完成製備了“鐵顆粒擔載鈀顆粒”結構型態之奈米級Pd/Fe複合金屬懸浮液。
在水體中硝酸鹽降解試驗結果顯示,奈米微粒在酸性條件下,可迅速將水體中之硝酸鹽降解;在鹼性環境則較不利於硝酸鹽之降解;但奈米Pd/Fe複合金屬於鹼性環境(pH = 11),仍然具有降解硝酸鹽之效能,反應60分鐘後,系統之硝酸鹽降解率可達84%。而整體研究結果顯示,改質之奈米Pd/Fe複合金屬對於水體中硝酸鹽污染具有更佳之降解效能。
本研究更進一步利用奈米Pd/Fe複合金屬懸浮液注入及電動力組合技術整治土壤管柱系統中之硝酸鹽污染,結果顯示懸浮液注入位置不同,將因環境pH值、電場驅動優勢機制等,而影響其整治成效。其中,以注入位置在陽極槽所得之成效最佳,最後土壤硝酸鹽之去除率達99.5%,而系統硝酸鹽之總消減率亦達99.2%。另奈米Pd/Fe複合金屬注入之金屬淨質量僅為總處理土體質量之0.05 wt%,即可達土體硝酸鹽整治去除率97%以上。由上述實驗結果可知,本研究所採用之創新處理技術可有效處理受硝酸鹽污染之土壤/地下水。
Abstract
The objective of this research was to evaluate the treatment efficiency of a nitrate-contaminated soil by combined technologies of the injection of palladized nanoiron slurry and electrokinetic remediation process. First, nanoiron was prepared by two synthesis processes based on the same chemical reduction principle yielding products of NZVI-A and NZVI-B, respectively. Then they were characterized by various methods. Micrographs of scanning electron microscopy have shown that a majority of these nanoparticles were in the range of 50-80 nm and 30-40 nm, respectively. Results of nitrogen gas adsorption-desorption show that NZVI-A and NZVI-B are mesorporous (ca. 30-40 Å) with BET surface areas of 128 m2/g and 77 m2/g, respectively. Results of X-ray diffractometry have shown that both types of nanoiron were poor in crystallinity. Results of zeta-potential measurements indicated that NZVI-A and NZVI-B had the same isoelectric point at pH 6.0. Although NZVI-A and NZVI-B were found to be superparamagnetic, their magnetization values were low.
Poly acrylic acid (PAA), an anionic dispersant, was employed for stabilizing various types of nanoiron. Then Palladium(ca. 1 wt% of iron) was selected as catalysis to form palladized nanoiron(Pd/Fe). Results have demonstrated that an addition of 1 vol. % of PAA during the nanoiron preparation process would result in a good stabilization of nanoiron and nanoscale Pd/Fe slurry.
Batch tests were carried out to investigate the effects of pH variation on degradation of nitrate aqueous solutions. Experimental results have indicated that palladized nanoiron outperformed nanoiron in treatment of nitrate in this study. Apparently, an employment of catalyst would enhance the treatment efficiency. Further, an exponential increase of the reaction rate was found for the systems at low pH.
The final stage of this study was to evaluate the treatment efficiency of combined technologies of the injection of palladized nanoiron(Pd/Fe) slurry and electrokinetic remediation process in treating a nitrate-contaminated soil. Test conditions used were given as follows: (1) slurry injection to four different positions in the soil matrix; (2) electric potential gradient: 1 V/cm; (3) daily addition of 20 mL of palladized nanoiron (4 g/L) slurry to the injection position; and (4) reaction time: 6 days. Test results have shown that addition of palladized nanoiron slurry to the anode reservoir yielded the lowest residual nitrate concentration in soil. Namely, about 99.5% removal of nitrate from soil. On the other hand, the acidic condition of soil matrix around the anode reservoir would enhance the degradation of nitrate therein. Based on the above findings, the treatment method employed in this work was proven to be a novel and efficient one in treating nitrate contaminated soil.
目次 Table of Contents
第一章前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究項目與架構 3
第二章文獻回顧 5
2.1 奈米科技的發展 5
2.1.1 奈米科技對於環境保護的應用 6
2.1.2 奈米鐵粉的應用 7
2.1.3 奈米鐵粉合成製備技術 8
2.1.4 奈米鐵粉改質技術 10
2.2 土壤及地下水污染整治技術 12
2.2.1 污染整治技術種類 12
2.2.2 硝酸鹽污染及其危害 13
2.2.3 硝酸鹽污染處理技術 16
2.3 零價鐵 18
2.3.1 奈米級零價鐵降解污染物之應用 18
2.3.2 零價鐵降解硝酸鹽與其反應機制 18
2.3.3 影響零價鐵降解效率相關因子 20
2.4 電動力法 23
第三章實驗材料與方法 26
3.1 實驗材料 26
3.1.1 化學試劑及材料 26
3.1.2 土壤樣品及前處理 28
3.2 實驗設備 28
3.2.1 儀器設備 28
3.2.2 電動力土壤管柱試驗設備 30
3.3 研究方法 32
3.3.1 奈米鐵合成製備程序 32
3.3.2 奈米鈀/鐵複合金屬製備 33
3.4 奈米鐵及奈米鈀/鐵複合金屬基本性質分析 34
3.4.1 掃描式電子顯微鏡與穿透式電子顯微鏡觀測 34
3.4.2 比表面積測定 35
3.4.3 X-光繞射分析 36
3.4.4 掃描式電子顯微鏡-能量分散光譜儀與能量分佈面掃描分析 36
3.4.5 X-光光電子能譜分析 36
3.4.6 界達電位量測 37
3.4.7 雷射動態光散射檢測 37
3.4.8 超導量子干涉磁量儀分析 38
3.5 硝酸鹽水溶液降解瓶杯試驗 39
3.6 電動力-奈米級Pd/Fe雙金屬懸浮液整治試驗 39
3.6.1 污染土樣配 39
3.6.2 批次泥漿降解試驗 40
3.6.3 土壤管柱電動力實驗 41
3.6.3.1 反應前後之分析項目 42
3.6.3.2 操作過程之監測項目 42
3.6.4 土壤樣品基本性質分析 43
3.6.4.1 粒徑分析 43
3.6.4.2 比重 44
3.6.4.3 pH值 45
3.6.4.4 含水份 46
3.6.4.5 有機物質含量 46
3.6.4.6 灼燒減量 46
3.6.4.7 陽離子交換容量 47
3.6.4.8 比表面積 48
3.6.4.9 土壤中鐵含量 48
第四章 結果與討論 50
4.1 不同合成程序之所得奈米鐵之基本性質分析 50
4.1.1 微粒形態及粒徑觀測 50
4.1.2 X-光繞射分析 53
4.1.3 比表面積測定 56
4.1.4 X-光光電子能譜分析 61
4.1.5 界達電位量測 62
4.1.6 磁性量測 63
4.1.7 奈米微粒沉降試驗 65
4.2 奈米鐵懸浮液改質探討 66
4.2.1 添加分散助劑改質試驗 66
4.2.2 鈀催化觸媒改質試驗 67
4.3 硝酸鹽水溶液降解瓶杯試驗 72
4.4 電動力-奈米Pd/Fe複合金屬懸浮液整治試驗 79
4.4.1 土壤樣品基本性質分析 79
4.4.2 批次泥漿降解試驗 80
4.4.3 電動力-奈米Pd/Fe複合金屬懸浮液注入土壤管柱試驗 81
第五章結論與建議 92
5.1 結論 92
5.2 建議 94
參考文獻 95
附錄 108
博士修習期間發表之相關著作 111
參考文獻 References
1. Roco, M. C., “Broader Societal Issues of Nanotechnology,” Journal of Nanoparticle Research, Vol. 5, pp. 181-189, 2003.
2. Masciangioli, T. and W. Zhang, “Environmental Nanotechnologies at the Nanoscale,” Environmental Science & Technology, Vol. 37, pp. 102A-108A, 2003.
3. 曹茂盛等,「奈米材料導論」,學富文化事業有限公司,台北市,2002。
4. Li, P., D. E. Miser, S. Rabiei, R. T. Yadav, and M. R. Hajaligol, “The Removal of Carbon Monoxide by Iron Oxide Nanoparticles,” Applied Catalysis B: Environmental, Vol. 43, pp. 151–162, 2003.
5. Bermejo, E., T. Becue, C. Lacour, and M. Quarton, “Synthesis of Nanoscaled Iron Particles from Freeze-Dried Precursors,” Powder Technology, Vol. 94, pp. 29-34, 1997.
6. Mazaleyrat, F. and L. K. Varga, “Ferromagnetic Nanocomposites,” Journal Magnetism and Magnetic Materials, Vol. 215, pp. 253-259, 2000.
7. Li, T., Y. Deng, X. Song, Z. Jin, and Y. Zhang, “The Formation of Magnetite Nanoparticle in Ordered System of the Soybean Lecithin,” Bulletin of Korean Chemical Society, Vol. 24, pp. 957-960, 2003.
8. Wilson, K. S., L. A. Harris, J. D. Goff, J. S. Riffle, and J. P. Dailey, “A Generalized Method for Magnetite Nanoparticle Steric Stabilization Utilizing Block Copolymers Containing Carboxylic Acids,” European Cells and Materials, Vol. 3, pp. 206-209, 2003.
9. Su, C. and R. W. Puls, “Removal of Added Nitrate in the Single, Binary, and Ternary Systems of Cotton Burr Compost, Zerovalent Iron, and Sediment: Implications for Groundwater Nitrate Remediation Using Permeable Reactive Barriers,” Chemosphere, Vol. 67, pp. 1653-1662, 2007.
10. Barber, W. P. and D. C. Stuckey, “Nitrogen Removal in a Modified Anaerobic Baffled reactor (ABR): 1, Denitrification,” Water Research, Vol. 34, pp. 2413-2422, 2000.
11. Feleke, Z. and Y. Sakakibara, “A Bio-Electrochemical Reactor Coupled with Adsorber for the Removal of Nitrate and Inhibitory Pesticide,” Water Research, Vol. 36, pp. 3092-3102, 2002.
12. Bae, B., Y. Juang, W. Han, and H. Shin, “Improved Brine Recycling During Nitrate Removal Using Ion Exchange,” Water Research, Vol. 36, pp. 3330-3340, 2002.
13. Rocca, C. D., V. Belgiorno, and S. Meriç, “Overview of In-situ Applicable Nitrate Removal Processes,” Desalination, Vol. 204, pp. 46-62, 2007.
14. www.nsf.gov, 2007.
15. 王鉦源,「以化學還原法製備奈米級銀鈀微粉」,碩士論文,國立成功大學化學工程學系,台南市,2002。
16. Renn, O. and M. C. Roco, “Nanotechnology and the Need for Risk Govermance,” Journal of Nanoparticle Research, Vol. 8, pp. 153-191, 2006.
17. www.epa.gov, 2007.
18. Wang, C. and W. Zhang, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science & Technology, Vol. 31, pp. 2154-2156, 1997.
19. Lien, H. and W. Zhang, “Transformation of Chlorinated Methanes by Nanoscale Iron Particles,” Journal of Environmental Engineering, Vol. 125, pp. 1042-1047, 1999.
20. Ponder, S. M., J. G. Darab, and T. E. Mallouk, “Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-Valent Iron,” Environmental Science & Technology, Vol. 34, pp. 2564-2569, 2000.
21. Lien, H. and W. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 191, pp. 97-105, 2001.
22. Zhang, W., “Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, Vol. 5, pp. 323-332, 2003.
23. Li, F., C. Vipulanandan, and K. K. Mohanty, “Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 223, pp. 103-112, 2003.
24. 魏明芬,「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中正大學化學研究所,嘉義縣,2002。
25. 劉小虹、顏肖慈、李傳,「納米鐵微粒製備新進展」,金屬功能材料,第九卷,第二期,第8-11頁,2002。
26. 李懋強,「超細粉體的化學合成」,中國粉體技術,第六卷專輯,第21-29頁,2000。
27. 徐國財、張立德,「奈米複合材料」,五南圖書出版股份有限公司,台北市,2004。
28. 馬振基,「奈米材料科技原理與應用」,全華科技圖書股份有限公司,台北市,2003。
29. 楊金鐘、張德光、洪志雄,“奈米級零價鐵懸浮液之分散性質初步探討”,第一屆環境保護與奈米科技學術研討會論文集,第45-50頁,新竹市,2004。
30. 楊金鐘、洪志雄、張德光,“奈米級鈀/鐵雙金屬:製備、基本性質及催化活性”,第二屆環境保護與奈米科學技術研討會論文集,第48-55頁,新竹市,2005。
31. Alessi, D. S. and Z. Li, “Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-Valent Iron,” Environmental Science & Technology, Vol. 35, pp. 3713-1717, 2001.
32. He, F. and D. Zhao, “Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,” Environmental Science & Technology, Vol. 39, pp. 3314-3320, 2005.
33. 吳先琪、王郁翔、魏裕庭,“The Preparation and Evaluation of Dispersed Nano-scale Iron Suspension for the Purposes of Environmental Remediation”,第二屆環境保護與奈米科技學術研討會論文集,第257-263頁,新竹市,2005。
34. Sondi, I., D. V. Goia, and E. Matijević, “Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles,” Journal of Colloid and Interface Science, Vol. 260, pp. 75-81, 2003.
35. Chen, J., T. He, W. Wu, D. Cao, J. Yun, and C. K. Tan, “Adsorption of Sodium Salt of Poly(Acrylic) Acid (PAA Na) on Nano-Sized CaCO3 and Dispersion of Nano-Sized CaCO3 in Water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 232, pp. 163-168, 2004.
36. 陳孝行、徐宏德、林偉宇、徐嘉彬,“零價金屬(Fe0、Zn0、Al0)去除硝酸鹽氮污染地下水源之研究”,第一屆土壤與地下水技術研討會集光碟,台中市,2003。
37. Lin, J. C., S. L. Lo, and Y. H. Liou, “Dechlorination of Tricholorethylene in Aqueous Solution by Noble Metal-Modified Iron,” Journal of Hazardous Materials, Vol. 116, pp. 219-228, 2004.
38. Orth, W. S. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environmental Science & Technology, Vol. 30, pp. 66-71, 1996.
39. 李秉傑、邱宏明、王奕凱 合譯,「非均勻系催化原理與應用」,渤海堂文化事業有限公司,台北市,1988。
40. Morales, J., R. Hutcheson, and I. F. Cheng, “Dechlorination of Cholorinated Phenols by Catalyzed and Uncatalyzed Fe(0) and Mg(0) Particles,” Journal of Hazardous Materials, Vol. 90, pp. 97-108, 2002.
41. Hang, W., C. Wang, and H. Lien, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles,” Catalysis Today, Vol. 40, pp. 387-395, 1998.
42. Elliott, D. W. and W. Zhang, “Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment,” Environmental Science & Technology, Vol. 35, pp. 4922-4926, 2001.
43. U. S. EPA, “Superfund Innovative Technology Evaluation Program,” Technology Profiles 10th Ed. Vol. 1, Demonstration Program, EPA/540/R99/500a, pp. 194-195; 202-203; 224-225, 1999.
44. 洪源駿,「電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址」,碩士學位論文,國立中山大學環境工程研究所,高雄市,2002。
45. 賴芳林,「探討亞硝酸鹽的健康危害」,環境檢驗雙月刊,第41期,第43-45頁,2001。
46. Reddy, K. J. and J. Lin, “Nitrate Removal from Groundwater Using Catalytic Reduction,” Water Research, Vol. 34, pp. 995-1001, 1999.
47. www.vghtpe.gov.tw/~tcfund/information/20010601_7.htm.
48. Luk, G. K. and W. C. Au-Yeung, “Experimental Investigation on the Chemical Reduction of Nitrate from Groundwater,” Advances Environmental Research, Vol. 6, pp. 441-453, 2002.
49. Nolan, B. T., B. C. Ruddy, K. J. Hitt, and D. R. Helsel, “Risk of Nitrate in Groundwater of the United States – A National Perspective,” Environmental Science & Technology, Vol. 31, pp. 2229-2236, 1997.
50. World Health Organization, Guidelines for Drinking Water Quality, 1996.
51. www.epa.gov.tw~地下水污染監測基準、地下水污染管制基準、飲用水水質標準、飲用水水源水質標準。
52. Cotton, F. A. and G. Wilkinson, Advanced Inorganic Chemistry, 4th ed., Wiley, New York, 1980.
53. Kapoor, A. and T. Viraraghavan, “Nitrate Removal from Drinking Water - Review,” Journal of Environmental Engineering, Vol. 123, pp. 371-380, 1997.
54. Haugen, K. S., M. J. Semmens, and P. J. Novak, “A novel In-situ Technology for the Treatment of Nitrate Contaminated Groundwater,” Water Research, Vol. 36, pp. 3497-3506, 2002.
55. Prüsse, U. and K. Vorlop, “Supported Bimetallic Palladium Catalysts for Water-Phase Nitrate Reduction,” Journal of Molecular Catalysis. A, Chemical, Vol. 173, pp. 313-328, 2001.
56. 李曉嵐,「奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究」,碩士學位論文,國立中山大學環境工程研究所,高雄市,2003。
57. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic iron,” Water Research, Vol. 32, pp. 2257-2264, 1998.
58. Cheng, S. F. and S. C. Wu, “The Enhancement Methods of the Degradation of TCE by Zero-Valent Metal,” Chemosphere, Vol. 41, pp. 1263-1270, 2000.
59. 程淑芬,「斗閘式現地地下水污染復育技術之探討-含氯有機化合物以零價金屬反應透水牆還原脫氯之研究」,博士學位論文,國立台灣大學環境工程研究所,台北市,2000。
60. 蔡璨樺,「零價鐵技術祛除三氯乙烯之研究」,碩士學位論文,國立中央大學環境工程研究所,中壢市,2000。
61. Zawaideh, L. L., and T. C. Zhang, “The Effect of pH and Addition of An Organic Buffer(HEPES)on Nitrate Transformation in Fe0-Water System,” Water Science and Technology, Vol. 38, pp. 107-115, 1998.
62. Hu, H. Y., N. Goto, and K. Fujie, “Effect of pH on the Reduction of Nitrite in Water by Metallic Iron,” Water Research, Vol. 35, pp. 2789-2793, 2001.
63. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron,” Chemosphere, Vol. 35, pp. 2689-2695, 1997.
64. 廖志祥,“零價鐵金屬存在下H2O2/UV程序對自然水之同時脫氮與礦化”,行政院國科會專題研究成果報告,計畫編號:NSC 89-2211-E-041-013,2000。
65. Siantar, D., C. G. Schreier, C. S. Chou., and M. Reinhard, “Treatment of 1,2-Dibromo-3-Chloroproprane and Nitrate Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysts,” Water Research, Vol. 30, pp. 2315-2322, 1996.
66. Choe, S., Y. Y. Chang, K. Y. Hwang., and J. Khim, “Kinetics of Reduction Denitrification by Nanoscale Zero-Valent Iron,” Chemosphere, Vol. 41, pp. 1307-1311, 2000.
67. www.cluin.org, “Hazardous Waste Clean- Up Information”, 2000.
68. Acar, Y. B. and A. N. Alshawabkeh, “Principles of Electrokinetic Remediation,” Environmental Science & Technology, Vol. 27, pp. 2638-2647, 1993.
69. 翁誌煌、林純玉、朱思樺,“利用商業用零價鐵提升電動力法處理高濃度六價鉻污染黏土之研究”,第二屆土壤與地下水研討會論文集光碟,台南市,2004。
70. Chew, C. F. and T. C. Zhang, “In-Situ Remediation of Nitrate-Contaminated Groundwater by Electrokinetic/Iron Wall Processes”, Water Science and Technology, Vol. 38, pp. 135-142, 1998.
71. Koparal, A. S. and U. B. Ogutveren, “Removal of Nitrate from Water by Electroreduction and Electrocoagulation”, Journal of Hazardous Materials, Vol. 89, pp. 135-142, 1998.
72. Hamed, J. T. and A. Bhadra, “Influence of Current Density and pH on Electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 279-294, 1997.
73. 薩支高、徐文逢,“環境變因對鎘污染土壤電動法移除效率影響”,第十四屆廢棄物處理技術研討會論文集,第2-79~2-86頁,中壢市,1999。
74. 洪肇嘉、陳建忠、王銘鴻、楊宜霖,“電動法附加水流去除鎘、鉻、鉛污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,第210-215頁,高雄市,1998。
75. 劉奇岳,「電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土之最佳操作條件探討」,碩士學位論文,國立中山大學環境工程研究所,高雄市,1999。
76. Baraud, F., S. Tellier, and M. Astruc, “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH,” Journal of Hazardous Materials, Vol. 64, pp. 263-281, 1999.
77. Kao, C. M., S. C. Chen, and M. C. Su, “Laboratory Column Studies for Evaluating a Barrier System for Providing Oxygen and Substrate for TCE Biodegradation,” Chemosphere, Vol. 44, pp. 925-934, 2001.
78. Glavee, G. N., K. J. Klabunde, C. M. Sorensen, and G. C. Hadlipanayis, “ Chemistry of Borohydride Reduction of Iron (II) and Iron (Ⅲ) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe°, FeB, and Fe2B Powders,” Inorganic Chemistry, Vol. 34, pp. 28-35, 1995.
79. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.60T,1995。
80. 行政院環保署環境檢驗所,「土壤、沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法」,NIEA R355. 00C,2002。
81. ASTM, “Standard Test Method for Specific Gravity of Soil,” ASTM D854-83, 1983。
82. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T,1995。
83. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539-579, Elsevier Scientific, 1980.
84. Head, K. H., Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests, Pentech Press Limited, Plymouth, Devon, 249, 1980.
85. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202. 60A,1995。
86. Kota, S., “Factor Limiting Intrinsic Bioremediation in Gasoline Contaminated Aquifer,” Ph.D. Dissertatiion, North Carolina State University, Raleigh, NC, USA, 1998.
87. 行政院環保署環境檢驗所,「土壤、沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法」,NIEA R355. 00C,2002。
88. Kecskes, L. J., R. H. Woodman, S. F. Trevino, B. R. Klotz, S. G. Hirsch, and B. L. Gersten, “Characterization of a Nanosized Iron Powder by Comparative Methods,” KONA, Vol. 21, pp. 143-150, 2003.
89. 張立德、張勁燕,「奈米材料」,五南圖書出版股份有限公司,台北市,2002。
90. Sun, Y. P., X. Q. Li, J. Cao, W. X. Zhang, and H. P. Wang, “Characterization of Zero-Valent Iron Nanoparticles,” Advances in Journal of Colloid and Interface Science, Vol. 120, pp. 47-56, 2006.
91. Lowry, G. V. and K. M. Johnson, “Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution,” Environmental Science & Technology, Vol. 38, pp. 5208-5216, 2004.
92. Schrick, B., J. L. Blough, A. D. Jones, and T. E. Mallouk, “Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles,” Chemistry of Materials, Vol. 14, pp. 5140-5147, 2002.
93. Liu, Y., S. A. Majetich, R. D. Tilton, and G. V. Lowry, “TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties,” Environmental Science & Technology, Vol. 39, pp. 1338-1345, 2005.
94. Liu, Y., H. Choi, D. Dionysiou, and G. V. Lowry, “Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron,” Chemistry of Materials, Vol. 17, pp. 5315-5322, 2005.
95. Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, “Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity,” Pure and Applied Chemistry, Vol. 57, pp. 603-619, 1985.
96. Su, C. and R. W. Puls, “Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science & Technology, Vol. 33, pp. 163-168, 1999.
97. 廖聖茹、黃依蘋、林仁章、黃瑞呈,“多孔性奈米材料比表面積/孔隙度檢測技術”,工業材料雜誌,190期,2002。
98. 陳孝行、徐宏德、鄭自祐、唐志慧,“以創新奈米鐵金屬製備技術應用於硝酸鹽氮去除之研究”,第二屆土壤與地下水研討會論文集光碟,台南市,2004。
99. Hou, Y. L. and S. Gao, “Solvothermal Reduction Synthesis and Magnetic Properties of Polymer Protected Iron and Nickel Nanocrystals,” Journal of Alloys and Compounds, Vol. 365, pp. 112-116, 2004.
100. 張德光,「結合鈀化奈米鐵懸浮液與電動力法處理地下環境介質中之三氯乙烯」,碩士學位論文,國立中山大學環境工程研究所,高雄市,2005。
101. Schafer, D., R. Kober, and A. Dahmke, “Competing TCE and cis-DCE Degradation Kinetics by Zero-Valent Iron - Experimental Results and Numerical Simulation,” Journal of Contaminant Hydrology, Vol. 65, pp. 183-202, 2003.
102. Ruiz, N., S. Seal, and D. Reinhart, “Surface Chemical Reactivity in Selected Zero-Valent Iron Samples Used in Groundwater Remediation,” Journal of Hazardous Materials, Vol. B80, pp. 107-117, 2000.
103. He, J., I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, and N. Toshima, “Facile Fabrication of Ag-Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films: Nanoparticle Morphology and Catalytic Activity,” Journal of American Chemistry Society, Vol. 125, pp. 11034-11040, 2003.
104. Doong, R. A., K. T. Chen, and H. C. Tsai, “Reductive Dechlorination of Carbon Tetrachloride and Tetrachloroethylene by Zerovalent Silicon–Iron Reductants,” Environmental Science & Technology, Vol. 37, pp. 2575-2581, 2003.
105. 楊金鐘、李曉嵐、洪志雄,“奈米零價鐵粉去除水體中硝酸鹽之反應動力研究”,第二十八屆廢水處理技術研討會論文集光碟,台中市,2003。
106. Yang, G. C. C. and H. L. Lee, “Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways,” Water Research, Vol. 39, pp. 884-894, 2005.
107. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, Reuse”, 3rd Ed., McGraw- Hill, Inc., New York, pp. 1045, 1991.
108. Yuan, C. and C. H. Weng, “Sludge Dewatering by Electrokinetic Technique: Effect of Processing Time and Potential Gradient,” Advances in Environmental Research, Vol. 7, pp. 727-732, 2003.
109. 涂秀娟,「奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於 水溶液中TCE 之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響」,碩士學位論文,國立中山大學環境工程研究所,高雄市,
2007。
110. Hackley, V. A., “Colloidal Processing of Silicon Nitride with Poly(arcrylic acid): I, Adsorption and Electrostatic Interactions,” Journal of American Ceramic Society, Vol. 80, pp. 2315-2325, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code