Responsive image
博碩士論文 etd-0828107-153832 詳細資訊
Title page for etd-0828107-153832
論文名稱
Title
以變動長度基因演算法為基礎解決異質性無線傳輸設備佈建之方法
Wireless Heterogeneous Transmitter Placement Based on the Variable-Length Genetic Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
34
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-22
繳交日期
Date of Submission
2007-08-28
關鍵字
Keywords
無線傳輸設備佈建、異質性無線網路、變動長度基因演算法
Variable-Length Genetic Algorithm, Wireless Heterogeneous Transmitter Placement, Heterogeneous Wireless Network
統計
Statistics
本論文已被瀏覽 5729 次,被下載 1579
The thesis/dissertation has been browsed 5729 times, has been downloaded 1579 times.
中文摘要
本論文是以變動長度基因演算法為基礎,解決異質性無線傳輸設備佈建之問題。在目前的無線傳輸技術,包括無線區域網路、3G 技術的蓬勃發展之下,如何正確的將一個空間佈滿指定的基地台,並且符合流量等的各種需求,是一個相當大的難題。目前的研究相關論文雖然能考慮相當多的因素,但是在演算法上面,卻因為演算法目前發展的限制,而必須先由使用者給予一個欲使用的基地台的上限值,其演算法才能夠找尋相對應的佈建方式。本論文提出以一個變動長度的基因演算法為基礎的演算法,跳脫以往佈建基地台必須先給予一個指定的基地台個數值的方式,能夠自動找尋所需的基地台數,並且能夠同時搜尋基地台所放置的位置,並且能夠同時考量佈建面積以及佈建所需的成本,以達到最佳化基地台佈建。
本論文最主要的貢獻如下:
一、 以往在佈建基地台前必須給予一個地圖以及使用基地台數的上限值,本論文所提出的方法可以自動找尋所需的基地台數。
二、 過去的方法必須先大略估計所需的基地台數後,再利用這個數字找尋基地台的放置位置,本論文所提出的方法可以同時找到所需的基地台數以及其基地台所放置的位置。
三、 本論文利用變動長度基因演算法為基礎,發展適合無線傳輸設備佈建問題之演算法。
透過我們所設計的一系列標準檢查程式,驗證本論文所提出的方法的正確性。本論文所提出的方法可以在使用者輸入一個地圖之後,自動找尋所需的基地台個數,並且找尋基地台的位置,且可達到覆蓋率95%以上。
Abstract
Wireless network placement of transmitters, such as base stations for 2G
and 3G, access points for WLAN, is a NP-hard problem, since many factors
have to be considered, like QoS, coverage, cost, etc. In wireless network
placement problem, the goal is to find a set of transmitters which achieves the
widest coverage on a given map and spends the minimal cost. In this thesis,
we propose a novel variable-length genetic algorithm for solving this problem.
Most of existing methods for solving wireless network placement problem, to
our best knowledge, users must assign an upper bound or a total number of
transmitters for placement. Unlike these existing methods, the proposed
algorithm can search the optimal number of transmitters automatically. In
addition, the proposed algorithm can find near optimal solutions even in
heterogeneous transmitters placement problem, i.e., transmitters with different
power radius or cost. The results on several benchmarks are very close to the
optimal solutions, which validate the capability of the proposed method in
finding the numbers, the types, are the positions of transmitters in
heterogeneous wireless network environment.
目次 Table of Contents
Contents
1. INTRODUCTION 1
2. PROBLEM STATEMENT 6
2.1. PLANNING MODEL 6
2.1.1. Map 6
2.1.2. Receiver 6
2.1.3. Transmitter 7
2.2. PROPAGATION MODEL 7
2.3. OBJECTIVES 8
2.3.1. Coverage 8
2.3.2. Cost 8
2.3.3. Objective Functions 9
3. PROPOSED ALGORITHM 10
3.1. REPRESENTATION 11
3.2. INITIALIZATION 12
3.3. FITNESS EVALUATION 13
3.4. SELECTION 13
3.5. CROSSOVER 13
3.5.1. Overall crossover 13
3.5.2. Uniform crossover for genes 14
3.5.3. Scheme for choosing genes 14
3.5.4. One-point crossover for chromosomes 15
3.6. MUTATION 16
4. SIMULATION AND RESULTS 17
4.1. BENCHMARK 1 17
4.2. BENCHMARK 2 20
4.3. BENCHMARK 3 22
4.4. BENCHMARK 4 23
5. CONCLUSION 26
REFERENCES 27
參考文獻 References
References
[1] S. Jindal, A. Jindal, N. Gupta, ”Grouping WI-MAX, 3G and WI-FI for
wireless broadband,” 2005.The First IEEE and IFIP International
Conference in Central Asia on Internet, pp. 5, Sep. 2005.
[2] L. Raisanen, R. M. Whitaker, and S. Hurley, “A Comparison of
Randomized and Evolutionary Approaches for Optimizing Base Station
Site Selection,” Proceedings of the 2004 ACM symposium on Applied
computing, pp. 1159 – 1165, 2004.
[3] A. Raniwala, and T. C. Chiueh, “Deployment Issues in Enterprise Wireless
LANS,” Technical Report of Experimental Computer System Lab., TR-145,
Sep. 2003.
[4] S. Dehghan, D. Lister, R. Owen, and P. Jones, “W-CDMA capacity and
planning issues,” Electronics & Communication Engineering Journal, vol.
12, Jun. 2000.
[5] N. Weicher, G. Szabo, K. Weicker, and P. Widmayer, “Evolutionary
multiobjective optimization for base station transmitter placement with
frequency assignment,” IEEE Transactions on Evolutionary Computation,
vol. 7, pp. 189- 203, Apr. 2003.
[6] S. Hurley, “Planning effective cellular mobile radio networks,” IEEE
Transactions on Vehicular Technology, vol. 51, Mar. 2002.
[7] Y. Zhang, C. Ji, P. Yuan, M. Li, C. Wang, and G. Wang, “Particle swarm
optimization for base station placement in mobile communication,” 2004
IEEE International Conference on Networking, Sensing and Control, pp.
428- 432, vol. 1, Mar. 2004.
[8] M. Unbehaun, BMW Group, and M. Kamenetsky, “On the deployment of
picocellular wireless infrastructure,” IEEE Wireless Communications, vol.
10, pp. 70- 80, Dec. 2003.
[9] C.Y. Lee, and H.G. Kang, “Cell planning with capacity expansion in mobile
communications: a Tabu search approach,” IEEE Transactions on
Vehicular Technology, vol. 49, Sep. 2000.
[10] E. Amaldi, A. Capone, and F. Malucelli, “Planning UMTS base station
location: optimization models with power control and algorithms,” IEEE
Transactions on Wireless Communications, vol. 2, Sep. 2003.
[11] G.. Cerri, R. De Leo, D. Micheli, P. Russo, “Base-station network planning
including environmental impact control,” IEEE
Proceedings-Communications, vol. 151, Jun. 2004.
[12] G. Cerri, P. Russo, “Application of an Automatic Tool for the Planning of a
Cellular Network in a Real Town,” IEEE Transactions on Antenna and
Propagation, vol. 54, Oct. 2006.
[13] L. Raisanen, and R. M. Whitaker, “Comparison and evaluation of multiple
objective genetic algorithms for the antenna placement problem,” Mobile
Networks and Applications, vol. 10, pp. 79 – 88, 2005.
[14] J. K. Han, B. S. Park, Y. S. Choi, and H. K. Park, “Genetic Approach with a
New Representation for Base Station Placement in Mobile
Communications,” VTC 2001-Fall, vol. 4, pp. 2703 – 2707, Oct. 2001.
[15] B. S. Park, J. G. Yook, and H. K. Park, “The Determination of Base Station
Placement and Transmit Power in an Inhomogeneous Traffic Distribution
for Radio Network Planning,” Proceedings on VTC 2002-Fall, vol. 4, pp.
2051 – 2055, 2002.
[16] L. Nagy, and L. Farkas, “Indoor Base Station Location Optimization using
Genetic Algorithms,” PIMRC 2000, vol. 2, pp. 843 – 846, Sep. 2000.
[17] C. Maple, L. Guo, J. Zhang, ”Parallel genetic algorithms for third
generation mobile network planning,” International Conference on Parallel
Computing in Electrical Engineering, pp. 229- 236, Sep. 2004.
[18] E. Amaldi, A. Capone, M. Cesana, F. Malucelli, F. Palazzo, “WLAN
Coverage Planning: Optimization Models and Algorithms,” VTC
2004-Spring, vol. 4, pp. 2219 – 2223, May 2004.
[19] Q. Hao, B. H. Soong, E. Gunawan, J. T. Ong, C. B. Soh, and Z. Li, “A
Low-Cost Cellular Mobile Communication System: A Hierarchical
Optimization Network Resource Planning Approach,” IEEE Journal on
Selected Areas in Communications, vol. 15, no. 7, pp. 1315 – 1326, Sep.
1997.
[20] H. D. Sherali, C. M. Pendyala, and T. S. Rappaport, “Optimal location of
transmitters for micro-cellular radio communication system design,” IEEE
Journal on Selected Areas in Communication, vol. 14, no. 4, pp. 662 - 673,
May 1996.
[21] D. Cavalcanti, D. Agrawal, C. Cordeiro, X. Bin, A Kumar, “Issues in
integrating cellular networks WLANs, AND MANETs: a futuristic
heterogeneous wireless network,” IEEE Wireless Communications, vol.
12, issue:3, pp. 30 – 41, Jun. 2005.
[22] K. Pahlavan, and P. Krishnamurthy, Principles of wireless networks, New
Jersey: Prentice Hall PTR, 2002.
[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Boston: Kluwer Academic Publishers, 1989.
[24] D. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithms: Motivation,
analysis, and first results,” Complex Systems, vol. 3, pp. 493–530, 1989.
[25] D. Burke, K. De Jong, J. Grefenstette, C. Ramsey, and A. Wu, D.Whitley,
Ed., “Putting more genetics into genetic algorithms,” Evolutionary
Computation., vol. 6, no. 4, pp. 387–410, 1998.
[26] I. Harvey, R. Männer and B. Manderick, Eds., “The SAGA cross: The
mechanics of crossover for variable-length genetic algorithms,” Parallel
Problem Solving from Nature, vol. 2, pp. 269–278, 1992.
[27] Benjamin Hutt and Kevin Warwick, “Synapsing Variable-Length Crossover:
Meaningful Crossover for Variable-Length Genomes,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 1, Feb. 2007
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code