Responsive image
博碩士論文 etd-0828108-164043 詳細資訊
Title page for etd-0828108-164043
論文名稱
Title
分散式電源串聯型併聯模組之均載控制策略
A Study on Peak Load Shaving Strategy for Distributed Generation Series Grid Interconnection Module
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-08-28
關鍵字
Keywords
分散式能源、再生能源、均載、電池儲能系統、動態電壓恢復器
distributed resources, renewable energy, load leveling, dynamic voltage restorer, battery energy storage system
統計
Statistics
本論文已被瀏覽 5674 次,被下載 4223
The thesis/dissertation has been browsed 5674 times, has been downloaded 4223 times.
中文摘要
本論文提出一種適用於配電系統小型分散式發電系統之併聯模組,其結合電池儲能系統與一組電壓源轉換器,以改變串聯模組注入電壓相位及大小而達到能量注入系統之目的。經由適當的控制,本模組可將夜間多餘電能儲存以供尖峰負載時段使用,因此能達到均載之功能,由於其併聯架構上的特殊,使得該模組在孤島現象的偵測上相對容易並具有改善電壓驟降的能力。此串聯模組方案適用於有小型分散式能源之處且對電壓相位改變不靈敏之負載。由於僅使用了一組電壓源轉換器,在經濟層面上助於用戶對於分散式發電的投資。
Abstract
This thesis presents the application of a series interconnection module for small distributed generation (DG) or renewable energy systems integration in the distribution network. The concept used one set of voltage source converter (VSC) with battery energy storage system to control the injected voltage magnitude and phase angle for power injection and voltage sag mitigation applications. Through an energy storage device and the VSC, the module allows storage of surplus energy during off peak period and release for use during daytime peak load period, therefore, exhibits a load leveling characteristic. Due to its series connection characteristic, it is convenient in preventing islanding operation and suitable for voltage sag mitigation. The concept is suitable for locations where the voltage phase shift is not a problem. Due to the use of only one set of VSC, it is economic for customer site distributed energy resource applications.
目次 Table of Contents
摘要......................................................................................... I
Abstract .................................................................................II
目錄........................................................................................III
圖目錄.....................................................................................V
表目錄..................................................................................VIII
第一章 緒論............................................................................1
1.1 研究背景與動機..............................................................1
1.2 現有分散式發電系統介紹..............................................5
1.3 分散式發電機之應用....................................................13
1.4 儲能裝置用於電力系統的介紹....................................16
1.4.1 超導磁能儲能系統....................................................16
1.4.2 電池儲能系統............................................................18
1.4.3 高階電容器................................................................18
1.4.4 飛輪儲能....................................................................19
1.5 分散式發電之併聯相關規範........................................20
1.6 串、並聯型式之電壓驟降補償比較............................24
1.7 論文架構........................................................................31
第二章 串聯型分散式能源併聯模組.................................32
2.1 併聯模組架構................................................................32
2.2 控制模式........................................................................33
2.2.1 能量注入功能............................................................33
2.2.2 配電饋線均載功能....................................................41
2.2.3 電壓驟降補償功能....................................................42
2.3 燃料電池模型之建立....................................................45
2.4 電池儲能系統模型........................................................48
2.5 三相全橋式換流器工作原理........................................49
2.6 電壓源轉換器之控制方式............................................52
2.7 串聯模組的故障電流限制能力....................................56
2.8 單獨運轉偵測................................................................57
第三章 系統功能模擬.........................................................65
3.1 模擬系統架構...............................................................65
3.2 能量注入功能...............................................................66
3.3 配電饋線均載功能........................................................71
3.4 電壓驟降補償功能........................................................77
3.5 故障電流限制功能........................................................78
3.6 孤島運轉偵測................................................................80
第四章 結論與未來研究方向.............................................85
4.1 結論................................................................................85
4.2 未來研究方向................................................................86
參考文獻..............................................................................87
參考文獻 References
[1] L. Coles and R. W. Beck, “Distributed generation and provide an
appropriate customer price response to help fix wholesale price
volatility,” Proceedings of IEEE Power Engineering Society Winter
Meeting, Vol. 1, pp. 141-143, 2001.
[2] P. P. Barker and R. W. De Mello, “Determining the impact of
distributed generation on power systems. I. Radial distribution
systems,” Proceedings of IEEE Power Engineering Society Summer
Meeting, Vol. 3, pp. 1645-1656, 2000.
[3] N. Jenkins, R. Allan, P. Crossley, D. Kirschen and G. Strbac,
Embedded Generation, IEE, UK, 2000.
[4] R. C. Dugan, Electrical Power Systems Quality, McGraw-Hill.
[5] L. Xu, E. Acha, and V.G. Agelidis, “A new synchronous frame-ba
sed control strategy for a series voltage and harmonic compensator,”
Proceedings of The Applied Power Electronics Conference and
Exposition 2001, pp. 1274-1280.
[6] 江榮城, “電力品質實務(一)” ,全華科技圖書股份有限公司,
2000。
[7] Resource Dynamic Corporation, “Distributed generation,” [On line]
available: http://www.distributed-generation.com, June, 2008.
[8] S. Muller, M. Deicke, and R. W. De Doncker, “Doubly fed induction
generator systems for wind turbines,” IEEE Industry Applications
Magazine, Vol. 8, Issue 3, pp. 26-33, May-June 2002.
[9] L. Zubieta and G. Panza, “A wide input voltage and high efficiency
DC-DC converter for fuel cell,” Proceedings of The Applied Power
Electronics Conference and Exposition 2005, Vol. 1, pp. 85-89.
[10] R. H. Staunton and B. Ozpineci, “Microturbine power conversion
88
technology review,” Oak Ridge National Laboratory, [On line]
available:
www.ornl.gov/sci/btc/apps/Restructuring/ORNL_TM_2003_74_fina
l1.pdf, June, 2008.
[11] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y . Liu,
“Energy storage systems for advanced power applications,”
Proceedings of IEEE Power Engineering Society Summer Meeting,
Vol. 89, Issue 12, pp. 1744-1756, Dec. 2001.
[12] J. McDowall, “Conventional battery technologies-Present and
future,” Proceedings of 2000 IEEE Power Engineering Society
Summer Meeting, Vol. 3, pp. 1538-1540, July 2000.
[13] M. A. Casacca, M. R. Capobianco, and Z. M. Salameh, “Lead-acid
battery storage configurations for improved available capacity,”
IEEE Trans. Energy Conversion, Vol. 11, pp. 139-145, Mar. 1996.
[14] N. Abi-Samra, C. Neft, A. Sundaram, and W. Malcolm, “The
distribution system dynamic voltage restorer and its applications at
industrial facilities with sensitive loads,” Proceedings of 8th Int.
Power Quality Solutions ’95, Long Beach, CA, Sept. 9-15, 1995.
[15] N. G. Hingorani, “Introducing custom power,” IEEE Spectrum, pp.
41–48, June 1995.
[16] E. Haginomori, “EMTP simulation of transient stability
enhancement phenomena by an inverter controlled flywheel
generator,” Elec. Eng. Jpn., Vol. 124, pp. 19-29, Aug. 1999.
[17] IEEE std. 1547-2003, IEEE Draft Standard for Interconnecting
Distributed Resources with Electric Power Systems.
[18] 潘俊強,“電壓驟降補償器之設計與製作”,國立清華大學電機系
碩士論文,2001。
89
[19] Hadi Saadat, Power System Analysis, McGraw-Hill, 1999.
[20] 台灣電力公司全球資訊網站,
Available: http://www.taipower.com.tw/index.htm, June, 2008.
[21] M. H. J. Bollen, Understanding Power Quality Problems, New York,
IEEE Press, 1999.
[22] 盧展南, 蕭英傑, 三種動態電壓恢復器電壓補償方式之模擬與比
較, 2004 中華民國第25 屆電力工程研討會。
[23] M. A. Eldery, E. F. El-Saadany, and M. M. A. Salama, “Effect of
distributed generator on the allocation of D-STATCOM in
distribution network,” Proceedings of IEEE Power Engineering
Society General Meeting, pp. 181-185, 2005.
[24] M. H. Haque, “Compensation of distribution system voltage sag by
DVR and D-STATCOM,” Proceedings of IEEE Porto Power Tech
Conference, Vol. 1, pp. 223-228, 2001.
[25] J. Padulles, G.W. Ault, J.R. McDonald, “An integrated SOFC plant
dynamic model for power systems simulation,” Journal of Power
Sources, Vol. 86 (2000), pp. 495-500.
[26] Y. Zhu, K. Tomsovic, “Development of models for analyzing the
load-following performance of microturbines and fuel cells,” Electric
Power Systems Research, Vol. 62 (2002), pp. 1-11.
[27] EG & G Services, Parsons, Inc. and Science Applications
International Corporation, Fuel Cell Handbook, Fifth ed., Oct. 2000.
[28] S. J. Chiang, S. C. Huang, and C. M. Liaw, “Three-phase
multifunctional battery energy storage system,” IEE Proceedings
Electric Power Applications, Vol. 142, No. 4, pp. 275-284, July
1995.
[29] B. Singh, J. Solanki, and A. Chandra, “Adaline based control of
90
battery energy storage system for diesel generator set,” Proceedings
of IEEE Power India Conference, pp.5, April 2006.
[30] M. W. Tsang and D. Sutanto, “ANN controlled battery energy
storage system for enhancing power system stability,” Proceedings
of International Conference on Advances in Power System Control,
Operation and Management, APSCOM, Vol. 2, pp. 327-331, 2000.
[31] R. S. Bhatia, S.P. Jain, D. K. Jain, and B. Singh, “Battery Energy
Storage System for Power Conditioning of Renewable Energy
Sources,” International Conference on Power Electronics and Drives
Systems, PEDS 2005. Vol. 1, pp. 501-506, Jan. 2006.
[32] B. Singh, A. Adya, A. P. Mittal, and J. R. P. Gupta, “Application of
Battery Energy Operated System to Isolated Power Distribution
Systems,” Proceedings of International Conference on Power
Electronics and Drive Systems, PEDS 2007, pp. 526-532, 2007.
[33] Z. M. Salameh, M. A. Casacca, and W.A. Lynch, “A mathematical
model for lead-acid batteries,” IEEE Trans. on Energy Conversion,
Vol. 7, No. 1, pp. 93-97, Mar. 1992.
[34] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:
Converters, Applications, and Design, Third Edition, John Wiley &
Sons, Inc.
[35] G. Chen, D. Jiang, Z. Wu, and Z. Lu, “Simulation study of bridge
type solid state fault current limiter for high-voltage power
network,” Proceedings of 2003 IEEE Power Engineering Society
General Meeting, Vol. 4, pp. 2521-2526.
[36] “Evaluation of islanding detection methods for photovoltaic
utility-interactive power systems,” Report IEA-PVPS T5-09: 2002,
March 2002.
91
[37] Y. Zhihong, A. Kolwalkar, Y. Zhang, P. W. Du, and W. Reigh,
“Evaluation of anti-islanding schemes based on nondetection zone
concept,” IEEE Transactions on Power Electronics, Vol. 19, Issue 5,
pp. 1171-1176, Sept. 2004.
[38] 何誠育,“考慮用戶負載模型及配合啟示性規則以改善配電系統
相位平衡之研究” ,國立中山大學電機系碩士論文,2004。
[39] Pacific Gas and Electric Company. [On line], Available:
http://www.pge.com/tariffs/ResTOUCurrent.xls, June, 2008.
[40] F. Z. Peng, “Application issues of active power filters,” IEEE
Industry Application Magazine, Vol. 4, Issues 5, pp. 21-30,
September/October 1998.
[41] C. J. Zhan, X. G. Wu, S. Kromlidis, V. K. Ramachandaramurthy, M.
Barnes, N. Jenkins, and A. J. Ruddell, “Two electrical models of the
lead-acid battery used in a dynamic voltage restorer,” IEE
Proceedings, Generation, Transmission and Distribution, Vol. 150,
Issue 2, pp. 175-182, March 2003.
[42] P. Shuo, J. Farrell, D. Jie, and M. Barth, “Battery state-of-charge
estimation,” Proceedings of the 2001 American Control Conference,
Vol. 2, pp. 1644-1649, June 2001.
[43] V. Coroban, I. Boldea, and F. Blaabjerg, “A novel on-line
state-of-charge estimation algorithm for valve regulated lead-acid
batteries used in hybrid electric vehicles,” Proceedings of
International Aegean Conference on Electrical Machines and Power
Electronics, pp. 39-46, 10-12 Sept. 2007.
92
[44] A. Kawamura and T. Yanagihara, “State of charge estimation of
sealed lead-acid batteries used for electric vehicles,” Proceedings of
29th Annual IEEE Power Electronics Specialists Conference, Vol. 1,
pp. 583-587, 17-22 May, 1998.
[45] IEEE Std. 519-1992, IEEE Recommended Practices and
Requirements for Harmonic Control in Electrical Power Systems.
[46] IEC/TR 61000-3-7, Electromagnetic compatibility (EMC) - Part 3-7:
Limits - Assessment of emission limits for the connection of
fluctuating installations to MV, HV and EHV power systems.
[47] IEC 61000-4-15, Electromagnetic compatibility (EMC) - Part 4:
Testing and measurement techniques - Section 15: Flickermeter -
Functional and design specifications.
[48] IEC 61400-21, Wind turbine generator systems - Part 21:
Measurement and assessment of power quality characteristics of grid
connected wind turbines.
[49] NEMA ANSI C84.1, Electric power systems and equipment -
voltage ratings (60 hertz).
[50] ANSI C62.41, IEEE Recommended practice for surge voltages in
low-voltage AC power circuits.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code