Responsive image
博碩士論文 etd-0828108-172408 詳細資訊
Title page for etd-0828108-172408
論文名稱
Title
分散式電源串聯型併聯模組硬體實現研究
An Implementation of Distributed Generation Series Grid Interconnection Module
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-08-28
關鍵字
Keywords
分散式電源、市電併聯模組、電壓驟降改善
Distributed generation, voltage sag mitigation, grid interconnection module
統計
Statistics
本論文已被瀏覽 5711 次,被下載 5101
The thesis/dissertation has been browsed 5711 times, has been downloaded 5101 times.
中文摘要
本論文研製一套應用於小型分散式發電之串聯模組。其概念為利用電壓源轉換器來注入不同大小與相位電壓,以達到能量輸出及壓降補償的目的。由於使用串聯併網的方式,將使能量儲存元件的輸出與線路負載量有著強烈的關係,可達成均載的作用。而在電壓驟降發生的情況下,串聯型併聯模組能輸出補償電壓,有效解決電壓降問題。本論文所提出的控制法乃採用電壓追蹤的方式,主要的工作為研製一單相484 VA之系統雛形來驗證本文所提方法之效能,本研究亦透過套裝軟體Matlab-simulink的模擬,比對模擬與實做之結果。
Abstract
An implementation of a series interconnection scheme for small distributed generation systems is presented in this thesis. The concept uses one set of voltage source converter to control the injected voltage magnitude and phase angle for power injection and voltage sag mitigation. Because of the use of series interconnection scheme, the energy storage device outputs vary concurrently with the line loading and provides loading leveling functions. Under voltage sag situations, it provides missing voltage to effectively deal with power quality problems. The control algorithm uses the reference voltage tracking concept. A signal phase 484 VA prototype of the proposed system is implemented. The performance of the proposed method is simulated and verified by using Matlab-simulink package and the implemented module.
目次 Table of Contents
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究背景與目標 1
1.2 分散式電源種類 2
1.3 分散式電源併聯及相關規範 6
1.3.1 分散式電源併聯問題 6
1.3.2 分散式電源併聯相關規範 8
1.4 分散式電源之應用與保護 10
1.4.1 分散式電源之應用 10
1.4.2 分散式電源併聯保護設備 12
1.5 電壓驟降及其對設備之影響 14
1.5.1 電壓驟降之成因 15
1.5.2 電壓驟降之定義 17
1.5.3 電壓驟降的防範策略 20
1.5.4 常見的補償設備 20
1.6 論文架構 23
第二章 串聯式併聯模組之系統架構 25
2.1 系統架構及併聯方式 25
2.2 控制方式及功率輸出能力評估 26
2.2.1 電壓相位變動法 26
2.2.2 控制方式之實現 30
2.3 系統功能模擬 33
2.3.1 串聯型併聯模組能量輸出功能 34
2.3.2 電壓驟降補償功能 35
第三章 硬體實現 38
3.1 換流器 38
3.1.1 單相換流器 38
3.1.2 正弦脈波寬度調變 39
3.2 濾波器 43
3.2.1 電源端濾波器 43
3.2.2 換流器端濾波器 45
3.3 硬體電路製作 48
3.3.1 控制電路 49
3.3.2 PWM產生電路 51
3.3.3 驅動電路 52
3.3.4 市電電壓回授電路 53
3.3.5 直流電源電路 53
3.3.6 緩衝電路 54
第四章 硬體測試結果與討論 56
4.1 測試條件與環境設定 56
4.2 電壓驟降補償功能 58
4.3 能量輸出功能 60
4.4 討論 64
第五章 結論與未來研究方向 65
5.1 結論 65
5.2 未來研究方向 65
參考文獻 68
附錄 實際硬體電路照片 72
參考文獻 References
[1] P. T. Cheng, C. C. Huang, C. C. Pan, and Subhashish Bhattacharya, “Design and Implementation of a Series Voltage Sag Compensator Under Practical Utility Conditions,” IEEE Transactions on Industry Applications, Vol. 39, No.3, May/June 2003, pp.884-853.
[2] N. H. Woodley, L. Morgan, and A. Sundaram, “Experience with an Inverter-Based Dynamic Voltage Restorer,” IEEE Transactions on Power Delivery, Vol. 14, No. 3, July. 1999, pp. 1181-1186.
[3] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “Dynamic Voltage Restoration with Minimum Energy Injection,” IEEE Transactions on Power Systems, Vol. 15, No. 1, Feb. 2000, pp. 51-57.
[4] A. Campos, G. Joos, P. D. Ziogas, and J. F. Lindsay, “Analysis and Design of a Series Voltage Unbalance Compensator Based on a Three-Phase VSI Operating with Unbalanced Switching Functions,” IEEE Transactions on Power Electronics, Vol. 9, No. 3, May. 1994, pp. 269-274.
[5] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “A Comparative Study of Inverter- and Line-side Filtering Schemes in the Dynamic Voltage Restorer,” Proceedings of IEEE Power Engineering Society Winter Meeting, Jan. 2000, Singapore, pp. 2967-2972.
[6] L. Xu, E. Acha, and V.G. Agelidis, “A New Synchronous Frame-Based Control Strategy for a Series Voltage and Harmonic Compensator,” APEC 2001, p1274-1280.
[7] B. H. Li, S. S. Choi, and D. M. Vilathgamuwa, “A New Control Strategy for Energy-Saving Dynamic Voltage Restoration,” Proceedings of IEEE Power Engineering Society Summer Meeting, 2000, pp.1103-1108.
[8] A. Sannino, and J. Svensson, “A Series-Connected Voltage Source Converter for Voltage Sag Mitigation Using Vector Control and a Filter Compensation Algorithm,” Proceedings of IEEE Industry Applications Conference, Vol.4, 2000, pp. 2476-2481.
[9] C. C. Pan, “Design and Implementation of a Voltage Sag Compensator,” National Tsing Hua University Dept. of Electrical Engineering, July 2001.
[10] C. C. Huang, “A New Control Algorithm of Voltage Sag Compensator for Sensitive Industrial Loads,” National Tsing Hua University Dept. of Electrical Engineering, July 2002.
[11] L. Coles and R. W. Beck, “Distributed Generation and Provide An Appropriate Customer Price Response to Help Fix Wholesale Price Volatility,” Proceedings of IEEE Power Engineering Society Winter Meeting, Vol. 1, pp. 141-143, 2001.
[12] P. P. Barker and R. W. De Mello, “Determining the Impact of Distributed Generation on Power Systems. I. Radial Distribution Systems,” Proceedings of IEEE Power Engineering Society Summer Meeting, Vol. 3, pp. 1645-1656, 2000.
[13] 傅俊仁,”分散式電源對配電系統之故障電流與電壓驟降分析”,南台科技大學電機系碩士論文,中華民國94年6月。
[14] 陳俊榮,”太陽光電能量轉換系統之研製”,南台科技大學電機系碩士論文,中華民國93年6月。
[15] M. A. A.Younis, N. A. Rahim and S. Mekhilef, “Fuel Cell Model for Three-Phase Inverter,” Proceedings of First International Power and Energy Conference (PECon), pp. 399-404, 2006
[16] IEEE Std. 1547-2003, IEEE Draft Standard for Interconnecting
Distributed Resources with Electric Power Systems, IEEE SCC21.
[17] M. Geidl, ”Protection of Power System with Distributed Generation,” Power System Lab., ETH, Zurich, July, 2005.
[18] M. H. J. Bollen, “Understanding Power Quality Problems,” New York: IEEE Press, 1999.
[19] M. F. Alves and T. N. Ribeiro, “Voltage Sag: An Overview of IEC and IEEE Standards and Application Criteria,” Proceedings of the 1999 IEEE Transmission and Distribution Conference, Vol. 2, 1999, pp. 585-589.
[20] ITI (CBEMA) Curve Application Note, Information Technology Industry Council, 2000.
[21] L. Conrad, K. Little and C. Grigg, “Predicting and Preventing Problems Associated with Remote Fault-Cleaning Voltage Dips,” IEEE Trans. on Industry Applications, Vol. 27, Jan. 1991, pp. 167-172.
[22] IEEE Std. 493-1997, IEEE Recommended Practice for Design of Reliable Industrial and Commercial Power System, Chapter 3, pp. 37-78.
[23] Olimpo Anaya-Lara and E. Acha, ”Modeling and Analysis of Custom Power Systems by PSCAD/EMTDC,” IEEE Transaction on Power Delivery, Vol. 17, No. 1, Jan 2002.
[24] S. Rosado, F. Wang, D. Boroyevich and R. Wachal ,”Control Interface Characterization of Power Electronics Building Blocks (PEBB) in Utility Power System Applications,” Proceedings of IEEE Power Engineering Society General Meeting, Vol. 3, July. 2003, pp. 1350-1355.
[25] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “A Comparative Study of Inverter- and Line-side Filtering Schemes in the Dynamic Voltage Restorer,” Proceedings of IEEE Power Engineering Society Winter Meeting, Jan. 2000, Singapore, pp. 2967-2972.
[26] 蕭英傑,”適用於分散式能源之串聯型併聯模組討論”,國立中山大學電機系碩士論文,中華民國95年。
[27] 張家豪,”一種動態電壓器之研製”,國立中山大學電機系碩士論文,中華民國93年。
[28] IEEE Std. 1159-1995, IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE SCC22.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code