Responsive image
博碩士論文 etd-0828108-213757 詳細資訊
Title page for etd-0828108-213757
論文名稱
Title
以電漿輔助分子束磊晶系統成長不同矽摻雜c面氮化銦及拉曼光譜之研究
Growth of c-plane InN with Various Si Doping by Plasma-assisted Molecular Beam Epitaxy and Raman Spectroscopy Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-25
繳交日期
Date of Submission
2008-08-28
關鍵字
Keywords
氮化銦
carrier density, Raman, Mobility, InN
統計
Statistics
本論文已被瀏覽 5730 次,被下載 0
The thesis/dissertation has been browsed 5730 times, has been downloaded 0 times.
中文摘要
在氮基半導體中,氮化銦有最高的電子飄移速度和最小的電子有效質量,氮化銦也被證實其能隙大概為0.6-0.7 eV左右。
最近幾年氮化銦引起大家的興趣,因為其在發光二極體、雷射和高頻元件等領域都有很好的應用。隨著這幾年磊晶技術的進步,電漿輔助分子束系統已可成長出高品質的氮化銦薄膜,但是我們對氮化銦此材料的物理特性還是沒有很清楚的了解。在此次實驗中我們利用電漿輔助分子束系統成長了一系列的矽摻雜氮化銦薄膜,其載子濃度從1.15x1018 cm-3 到1.9x1019 cm-3。本論文中將會對此一系列的氮化銦薄膜去做光致螢光、陰極發光、x-ray繞射、拉曼光譜、電子顯微鏡、霍爾量測等實驗與分析。
Abstract
Among nitide sremiconductor, InN has the highest electron drift velocity and the smallest effective mass. InN has also been proven to be a narrow band gap semiconductor with a band gap energy of about 0.6-0.7 eV at room temperature.
During the past few years, InN has attracted extensive attention due to is potential applications in semiconductor devices such as light-emitting diodes, lasers, and high efficiency solar cells. With the improvement of growth techniques in recently years, high quality InN films grown by plasma-assisted molecular-beam epitaxy (PAMBE) are now readily available. But there is no explicit knowledge for the physical properties of InN. In our experiment, we grow a serious of Si-doped InN with carrier concentration from 1.15 × 1018 cm-3 to 1.90×1019 cm-3 by PAMBE . In this thesis we will introduce the instrument and describe the characteristics of Si-doped InN by photoluminescence, high-resolution x-ray diffraction, Raman spectroscopy, Scanning Electron Microscopy and cathodoluminescence
目次 Table of Contents
Figure List----------------------------------------------------------- (3)
Table List-------------------------------------------------------------(5)
中文摘要----------------------------------------(8)
Abstract---------------------------------------------------------------(9)
Introduction----------------------------------------------------------(7)
Chapter 1 Introduction of MBE and sample growth
1.1 Plasma-assisted molecular beam epitaxy system--------(15)
1.2 Sample preparation ------------------------------------------(18)
1.3 Growth procedure--------------------------------------------(18)
Chapter 2 Introduction of measurements
2.1 Scanning electron microscopy (SEM)------------------(22)
2.2 High resolution X-ray diffraction (HR-XRD)------------(25)
2.3 Hall measurement--------------------------------------------(29)
2.4 Photoluminescence (PL)------------------------------------(34)
2.5 Cathodoluminescence (CL)---------------------------------(38)
2.6 Micro-Raman / Micro-PL-----------------------------------(39)
Chapter 3 Result and Analysis
3.1 SEM-----------------------------------------------------------(45)
3.2 XRD-----------------------------------------------------------(45)
3.3 Hall measurement-------------------------------------------(51)
3.4 Temperature-dependent PL--------------------------------(53)
3.5 Temperature-dependent CL--------------------------------(64)
3.6 Micro-Raman------------------------------------------------(69)
Chapter 4 Conclusion -----------------------------------------(73)
Reference list-------------------------------------------------------(74)
參考文獻 References
[1] K. Osamura, S. Nara and Y. Murakami, “Preparation and optical properties of GaxIn1-xN thin films”, Journal of Applied Physics, Vol.46, p.3432~3437 (1975).

[2] H. J. Hovel and J. J. Cuomo, “Electrical and Optical Properties of rf-Sputtered GaN and InN”, Applied Physics Letter, Vol.20, p.71~73 (1972).

[3] K. L. Westra, R. P. W. Lawson and M. J. Brett, “The effects of oxygen contamination on the properties of reactively sputtered indium nitride films ”, Journal of Vacuum Science and Technology, A6, p.1730~1732 (1988)
.
[4] T. Matsuoka, H. Tanaka, and A. Katsui, “Wide-Gap Semiconductor (In,Ga)N ” Int. Symp. on GaAs and Related Compounds, Karuizawa, 1989, Institute of Physics Conference Series 106, 141 (1990).

[5] T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, Journal of Applied Physics, Vol.59, p.3241~3244 (1986).

[6] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev , F. Bechstedt , A.V. Mudryi, E. E. Halle, “Absorption and Emission of Hexagonal InN”, Evidence of Narrow Fundamental Band Gap, Physica Status Solidi, B Vol.229, No.3, p.R1~R3 (2002).

[7] D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN”, Physics Review, B Vol.39, p.3317~3329 (1989).

[8] E. Calleja, _ J. Grandal, and M. A. Sánchez-García, “Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns”, APPLIED PHYSICS LETTERS 90, 262110 (2007)


[9] K. Osamura, K. Nakajima, and Y. Murakami, “Fundamental absorption edge in GaN, InN and their alloys”, Solid State Commun,Vol.11, p.617~621 (1972).

[10] A. Yamamoto, T.Tanaka, K. Koide, and A. Hashimoto, “Improved Electrical Properties for Metalorganic Vapour Phase Epitaxial InN Films”, Physica Status Solidi (b) Vol.194,No.2, p.510~514 (2002).

[11] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto,
“Optical bandgap energy of wurtzite InN”, Applied Physics Letter, Vol.81, p.1246~1248 (2002).

[12] J. Wu, W. Waluchiewicz, K.M Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Applied Physics Letter, Vol.80, p.3967~3969 (2002).

[13] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suziki, “Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF-MBE”, Physica Status Solidi b, Vol.234, No.3, p.796~800 (2002).

[14] T. Inushima, V. U. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, “Physical properties of InN with the band gap energy of 1.1 eV”, Journal of Crystal Growth, 227/228, 481~485 (2001).

[15] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, “Conductivity control of GaN and fabrication of UV/blue GaN light emitting devices”, Physica B, Vol.185, p.428 ~432 (1993).

[16] S. Nakamura, M. Senoh, and T. Mukai, “ P-GaN / N-InGaN / N-GaN Double-heterostructure Blue-lijght-emitting Diodes ”, Japanese Journal of Applied Physics, Part 2, Vol.32, p.L8~L1(1993).

[17] S. N. Mohammad and H. Morkoc, “Progress and prospects of group-III nitride semiconductors”, Progress in Quantum Electronics, Vol.20, p.361~525 (1996).

[18] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobllities in gallium, indium, atid aluminum nitrldes”, Journal of
Applied Physics, Vol.75, p.7365~7372 (1994).

[19] Masataka Higashiwaki and Toshiaki Matsui, “Estimation of band-gap energy of intrinsic InN from photoluminescence properties of undoped and Si-doped InN films grown by plasma-assisted molecular-beam epitaxy” , Journal of Crystal Growth 269 p.162-p166 (2004)

[20] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): a review on growth, characterization, and properties”, Journal of Applied Physics, Vol.94, p.2779~2808 (2003).

[21] 材料科學叢書2, 材料分析, 汪建民主編, 中國材料科學學會。
[22] 使用三氮化氫成長磊晶氮化銦薄膜:成長機制之即時研究與光學特性分析, 陳志泰 著 , 大同大學, 2006。
[23] 江志偉, Investigation of PAMBE Grown InN on Different Buffer Layers, 2006, 中山大學物理所碩士論文。
[24] 林冠廷, The study of Carrier Relaxation in InN Thin Films, 2007, 中山大學物理所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.187.103
論文開放下載的時間是 校外不公開

Your IP address is 3.144.187.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code